[ComfyUI]万相Wan首尾帧功能也有了,社区发展太给力了

哈喽这里是海绵

今天分享下万相Wan的首尾帧功能,目前也支持了。

图片

一、介绍

继腾讯混元推出首尾帧功能后,万相也发力了, 最近也支持了首尾帧功能,在KJ图生视频版本基础上做一些调整即可,需要额外安装个插件 ComfyUI-WanVideoStartEndFrames

按官方文档介绍,它主要在代码级别实现开始和结束帧视频生成功能,尚未涉及模型或 LoRA 微调,这计划在未来的工作中进行。此外,在图像到视频 (I2V) 中加入结束帧指导似乎会降低视频生成质量,这是未来需要改进的另一个领域。

注意:视频生成最好伴随正向提示。目前,缺少正向提示会导致严重的视频失真。

二、相关安装

要体验万相Wan视频的首尾帧功能,核心就2个插件

ComfyUI-WanVideoWrapper:https://github.com/kijai/ComfyUI-WanVideoWrapper

ComfyUI-WanVideoStartEndFrames:https://github.com/raindrop313/ComfyUI-WanVideoStartEndFrames

新插件无法在节点管理器里面搜到,需要用Git Url安装

图片

三、使用说明

工作流和以前图生视频类似,只是用的是新插件的一些节点,大家直接下载工作流拖进来即可,模型还是和以前一样。

图片

我们来看几个案例:

这个是之前用过的一组

图片

来个建筑春暖花开的

图片

,时长00:03

再来个宠物的

图片
为了帮助大家更好地掌握 ComfyUI,我在去年花了几个月的时间,撰写并录制了一套ComfyUI的基础教程,共六篇。这套教程详细介绍了选择ComfyUI的理由、其优缺点、下载安装方法、模型与插件的安装、工作流节点和底层逻辑详解、遮罩修改重绘/Inpenting模块以及SDXL工作流手把手搭建。

由于篇幅原因,本文精选几个章节,详细版点击下方卡片免费领取
请添加图片描述

一、ComfyUI配置指南

  • 报错指南
  • 环境配置
  • 脚本更新
  • 后记

img

二、ComfyUI基础入门

  • 软件安装篇
  • 插件安装篇

img

三、 ComfyUI工作流节点/底层逻辑详解

  • ComfyUI 基础概念理解
  • Stable diffusion 工作原理
  • 工作流底层逻辑
  • 必备插件补全

img

四、ComfyUI节点技巧进阶/多模型串联

  • 节点进阶详解
  • 提词技巧精通
  • 多模型节点串联

img

五、ComfyUI遮罩修改重绘/Inpenting模块详解

  • 图像分辨率
  • 姿势

img

六、ComfyUI超实用SDXL工作流手把手搭建

  • Refined模型
  • SDXL风格化提示词
  • SDXL工作流搭建

img

由于篇幅原因,本文精选几个章节,详细版点击下方卡片免费领取

img
请添加图片描述

### 通义万相ComfyUI文本生成视频功能详解 #### 工具概述 通义万相是一款由阿里云开发的多模态人工智能模型,支持多种创意生成任务,其中包括文本到视频的转换。通过结合ComfyUI——一种灵活且高效的图形化界面工具,用户可以更便捷地实现复杂的AI创作流程[^3]。 #### 部署环境准备 为了顺利运行基于通义万相ComfyUI的文本生成视频工作流,需完成如下准备工作: - **安装依赖库**:确保Python环境已配置好,并按照官方文档中的指导安装必要的依赖项。 - **获取预训练权重文件**:访问魔搭或其他指定资源站点下载对应版本的模型参数。 - **设置计算设备**:优先选用具备较高性能的GPU硬件加速运算过程;当面临显存瓶颈时可考虑调整精度至FP8模式以降低内存消耗[^1]。 #### 创建自定义节点 在ComfyUI框架下操作具体步骤如下所示: ##### 添加新节点逻辑 利用Python脚本扩展机制新增专门用于处理来自通义万相输入数据类型的组件实例。 ```python class WanXiangTextToVideoNode: @classmethod def INPUT_TYPES(s): return {"required": { "prompt": ("STRING", {}), }} RETURN_TYPES = ("VIDEO_STREAM",) FUNCTION = "process" CATEGORY = "CustomNodes/AIContentCreation" def process(self, prompt): from wanxiang_api import generate_video_from_text video_stream = generate_video_from_text(prompt=prompt) return (video_stream,) ``` 上述代码片段展示了如何构建一个接受字符串形式提示词作为入口参数并返回视频流对象的新类定义。 #### 构建完整流水线 最后一步就是把之前定制好的各个模块串联起来形成端到端解决方案。这通常涉及拖拽不同种类的标准或自制部件到画布区域再连线确立它们之间的交互关系直至整个结构满足预期目标为止。 ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值