Thread current = Thread.currentThread();
cas.compareAndSet(current, null);
}
}
上段代码中,方法lock利用的CAS,当线程A获取锁的时候,成功获取不会进入while循环。如果此时线程A没有释放锁,当线程B来获取锁的时候,由于不满足CAS,就会进入whilei循环,不断判断是否满足CAS,直到线程A调用unlock释放。
自旋锁有哪些优点?
-
因为运行在用户态,没有上下文的线程状态切换,线程一直处于active,减少了不必要的上下文切换,从而执行速度较快
-
因为非自旋锁在没有获取锁的情况下会进入阻塞状态,从而进入内核态,此时就需要线程的上下文切换,因为阻塞后进入内核调度状态,会导致用户态和内核态之间的切换,影响锁的性能。
- 了解哪些I/O模型?select是阻塞IO吗?
首先将IO模型给安排一遍,然后把自己很熟悉的IO模型详细说一波并介绍出应用场景,这个装的X就算比较完美,具体的非常详细的在下一篇文章,这里简要说一波。
阻塞IO
我们知道在调用某个函数的时候无非就是两种情况,要么马上返回,然后根据返回值进行接下来的业务处理。当在使用阻塞IO的时候,应用程序会被无情的挂起,等待内核完成操作,因为此时的内核可能将CPU时间切换到了其它需要的进程中,在我们的应用程序看来感觉被卡主(阻塞)了。
非阻塞IO
当使用非阻塞函数的时候,和阻塞IO类比,内核会立即返回,返回后获得足够的CPU时间继续做其它的事情。
IO复用模型
当使用fgets等待标准输入的时候,如果此时套接字有数据但不能读出。IO多路复用意味着可以将标准输入、套接字等都当做IO的一路,任何一路IO有事件发生,都将通知相应的应用程序去处理相应的IO事件,在我们看来就反复同时可以处理多个事情。这就是IO复用。
信号驱动IO
在信号驱动式 I/O 模型中,应用程序使用套接口进行信号驱动 I/O,并安装一个信号处理函数,进程继续运行并不阻塞。当数据准备好时,进程会收到一个 SIGIO 信号,可以在信号处理函数中调用 I/O 操作函数处理数据。
异步IO
用程序告知内核启动某个操作,并让内核在整个操作(包括将数据从内核拷贝到应用程序的缓冲区)完成后通知应用程序。那么和信号驱动有啥不一样?
- 讲讲select和epoll的区别?
这里一样的套路,先说出两者的用途,然后两者的优缺点。
select的缺点
-
select返回的是含有整个句柄的数组,应用程序需要遍历整个数组才能发现哪些句柄发生了事件
-
select的触发方式是水平触发,应用程序如果没有完成对一个已经就绪的文件描述符进行IO操作,那么之后每次select调用还是会将这些文件描述符通知进程
-
内核 / 用户空间内存拷贝问题,select每次都会改变内核中的句柄数据结构集,因而每次select调用时都需要从用户空间向内核空间复制所有的句柄数据结构,产生巨大的开销
-
单个进程能够监视的文件描述符的数量存在最大限制,通常是1024,当然可以更改数量
epoll实现
epoll在内核中会维护一个红黑树和一个双向链表,红黑树存放通过epoll_ctl方法向epoll对象中添加进来的事件,所以不需要每次调用epoll_wait都全量复制所有的事件结构。双向链表存放就绪的事件,所有添加到epoll中的事件都会与设备(网卡)驱动程序建立回调关系,也就是说,当相应的事件发生时会调用这个回调方法,这个回调方法在内核中叫ep_poll_callback,它会将发生的事件添加到rdlist双链表中。调用epoll_wait就会直接返回链表中的就绪事件,效率高。
-
select适合少量活跃连接,一般几千。
-
epoll适合大量不太活跃的连接。
-
乐观锁和悲观锁了解吗?
这个问题延伸的问题会很多,比如线程安全,CAS原理,优缺点等。
啥是悲观和乐观,咱们面试的时候不得乐观一些。想给面试来一波官方解释,然后大白话解释一波就差不多了。
官方:悲观锁是总是假设最坏的情况,每次拿数据都认为别人会修改它,所以每次去拿数据都要上锁,这样别人去拿这个数据就会阻塞。乐观锁就不一样了,总是觉得一切都是最好的安排,每次拿数据都认为别人不会修改,所以也就不上锁,但是在更新的时候会判断这个期间别人有没有更新这个数据。
- 什么是缓存穿透?如何避免?什么是缓存雪崩?何如避免?
缓存穿透
一般来说,缓存系统会通过key去缓存查询,如果不存在对应的value,就应该去后端系统查找(比如DB)。这个时候如果一些恶意的请求到来,就会故意查询不存在的key,当某一时刻的请求量很大,就会对后端系统造成很大的压力。这就叫做缓存穿透。
如何避免?
对查询结果为空的情况也进行缓存,缓存时间设置短一点,或者该key对应的数据insert了之后清理缓存。对一定不存在的key进行过滤。可以把所有的可能存在的key放到一个大的Bitmap中,查询时通过该bitmap过滤。
缓存雪崩
当缓存服务器重启或者大量缓存集中在某一个时间段失效,这样在失效的时候,会给后端系统带来很大压力。导致系统崩溃。
如何避免?
在缓存失效后,通过加锁或者队列来控制读数据库写缓存的线程数量。比如对某个key只允许一个线程查询数据和写缓存,其他线程等待。
做二级缓存,A1为原始缓存,A2为拷贝缓存,A1失效时,可以访问A2,A1缓存失效时间设置为短期,A2设置为长期。
不同的key,设置不同的过期时间,让缓存失效的时间点尽量均匀。
操作系统复习资料
========
给大家分享一份阿里P8Java大牛呕心沥血整理的《程序员必知的操作系统》PDF文档学习资料
先来看下这份资料的目录
内容涉及
-
认识操作系统
-
进程和线程
-
内存管理
-
文件管理
-
I/O
-
死锁
-
操作系统面试题
-
操作系统核心概念
字是一个一个敲的,图是一笔一笔画的。
可以看到图非常清晰,而且排版样式非常好
还为你汇总了操作系统面试题
![一场哔哩哔哩Java开发面试之旅,分享面试经历及复习资料](https://img-blo
《一线大厂Java面试题解析+后端开发学习笔记+最新架构讲解视频+实战项目源码讲义》
【docs.qq.com/doc/DSmxTbFJ1cmN1R2dB】 完整内容开源分享
g.csdnimg.cn/img_convert/b51d6ba26a32c82bb44ab557b916a3b7.png)
还有所有操作系统名词汇总
这份PDF 一共是 306 页,17w 字,我想这应该是全网第一份操作系统知识的 PDF 了吧,希望大家能够珍藏。
转发+关注,然后添加VX(tkzl6666)即可获得《程序员必知的操作系统》PDF文档学习资料的免费领取方式。
redis相关
=======
如果是后端/服务端面试的同学,怎么说都得去找一本redis书来看看,其出现的概率只有那么大了,切记切记。看看B站问了哪几个问题。
- redis的淘汰删除策略了解吗?
能说不了解吗,就算是没有听说过,咱们也可以来一句:“不好意思面试官,这一块还不怎么深入,但是从字面意思来理解巴拉巴拉”,不至于一脸懵逼。下面我们看看redis的缓存策略
Redis中通过maxmemory参数来设定内存的使用上限,如果Redis所使用内存超过设定的最大值,那么会根据配置文件中的策略选取要删除的key来删除,从而留出新的键值空间。主要的六种淘汰key策略:
- volatile-lru
在键空间中设置过期时间,移除那些最近最少使用的key,占着茅坑不拉屎的key
- allkeys-lru
移除最近最少使用的key
- volatile-random
在键空间中设置过期时间,随机移除一个key
- allkeys-random
随机移除一个key
- noeviction
当内存使用达到阀值的时候,所有引起申请内存的命令会报错;
ok,现在知道了需要淘汰哪些key,那我们如何去淘汰这些key?
- 定时删除
很简单,设置一个闹钟,闹钟响了就删除即可。这种方式对于内存来说还是比较友好,内存不需要啥额外的操作,直接通过定时器就可保证尽快的删除。对于CPU来说就有点麻烦了,如果过期键比较多,那么定时器也就多,这删除操作就会占用太多的CPU资源。
- 惰性删除
每次从键空间获取键的时候检查键的过期时间,如果过期了,删除完事。
- 定期删除
每隔一段时间就去数据库检查,删除过期的键。
这种方案是定时删除和惰性删除的中和方法,既通过限制删除操作执行的时长来减少对CPU时间的影响,也能减少内存的浪费。但是难点在于间隔时长需要根据业务情况而定。
redis复习资料
=========
一位有着十年经验的互联网分布式高并发技术老兵,梳理自己多年 Redis 实践经验,写了这本书《Redis深度历险:核心原理与应用实战》,以帮助更多工程师更快,更深入的了解 Redis 。
书籍内容分为五大部分:
===========
**一、Redis应用:**分布式锁、延时队列、位图、HyperLogLog、布隆过滤器、限流、GeoHash、Scan
**二、Redis原理:**IO现场模型、通信协议、持久化、管道、事务、PubSub、对象压缩、主从同步
**三、Redis集群:**Sentinel、Codis、Cluster
**四、Reids拓展知识:**Stream、Info命令、分布式锁、过期策略、LRU、懒删除、Jedis
**五、Redis源码剖析:**字符串、字典、压缩列表、快速列表、跳跃列表、紧凑列表、基数树
全书图文并茂,通俗易懂,看看下面的动图感受一下:
转发+关注,然后然后添加VX(tkzl6666)即可获得《Redis深度历险》PDF文档学习资料的免费领取方式。
Mysql
=====
- Mysql中使用的锁有哪些?什么时候使用行锁,什么时候会使用表锁?
InnoDB中的行锁是通过索引上的索引项实现,主要特点是,只有通过索引条件检索数据,InnoDB才会使用行级锁,否则InnoDB将使用表锁。
这里注意,在Mysql中,行级锁不是锁记录而是锁索引。索引又分为主键索引和非主键索引两种。如果在一条语句中操作了非主键索引,Mysql会锁定该非主键索引,再锁定相关的主键索引。
-
了解过间隙锁吗?间隙锁的加锁范围是怎么确定的?
-
了解B+树吗?B+树什么时候会出现节点分裂?
这个回答在上一篇的B+树已经详细说了。这里简述一下:
-
将已满节点进行分裂,将已满节点后M/2节点生成一个新节点,将新节点的第一个元素指向父节点。
-
父节点出现已满,将父节点继续分裂。
-
一直分裂,如果根节点已满,则需要分类根节点,此时树的高度增加。
-
事务还没执行完数据库挂了,重启的时候会发生什么?
-
undo日志和redo日志分别是干嘛的?
redo log重做日志是InnDB存储引擎层的,用来保证事务安全。在事务提交之前,每个修改操作都会记录变更后的数据,保存的是物理日志-数据,防止发生故障的时间点,有脏页未写入磁盘,在重启mysql的时候,根据redo log进行重做从而达到事务的持久性
undo log回滚日志保存了事务发生之前的数据的一个版本,可以用于回滚,同时也提供多版本并发控制下的读。
- 简单讲讲数据库的MVCC的实现原理?
细说太多了,几个大写字母代表啥,这几个大写字母又是如何关联起来完事。细问再深究
- mysql的binlog日志什么时候会使用?
首先应该知道binlog是一个二进制文件,记录所有增删改操作,节点之间的复制都会依靠binlog来完成。从底层原理来说,binlog有三个模式
- 模式1–row模式
每一行的数据被修改就会记录在日志中,然后在slave段对相同的数据进行修改。比如说"update xx where id in(1,2,3,4,5)",使用此模式就会记录5条记录
- 模式2–statement模式
修改数据的sql会记录到master的binlog中。slave在复制的时候sql thread会解析成和原来maseter端执行过的相同的sql在此执行
- 模式3–mixed模式
mixed模式即混合模式,Mysql会根据执行的每一条具体sql区分对待记录的日志形式。那么binlog的主从同步流程到底是怎样的
流程简述:
Master执行完增删改操作后都会记录binlog日志,当需要同步的时候会主动通知slave节点,slave收到通知后使用IO THREAD主动去master读取binlog写入relay日志(中转日志),然后使 SQL THREAD完成对relay日志的解析然后入库操作,完成同步。
mysql复习资料