能带你起飞的【数据结构】成王第八篇:二叉树

前言

树形结构

树是一种非线性的数据结构,它是由n(n>=0)个有限结点组成一个具有层次关系的集合。把它叫做树是因为它看起来像一棵倒挂的树,也就是说它是根朝上,而叶朝下的。

特点:

1.有一个特殊的节点,称为根节点,根节点没有前驱节点,A就是根节点

2.除根节点外,其余节点被分成M(M > 0)个互不相交的集合T1、T2、......、Tm,其中每一个集合 Ti (1 <= i <= m) 又是一棵与树类似的子树。每棵子树的根节点有且只有一个前驱,可以有0个或多个后继

B C D E......都是一个集合.

B就是一棵子树,它的前驱就是A

注意:树形结构中,子树之间不能有交集,否则就是不是树形结构

好比划红线的地方

3.树是递归定义的。

节点的度:一个节点含有的子树的个数称为该节点的度; 如上图:A的为6

最大的深度才是树的高度 如上图:A深度是1,E深度是2,J深度是3,Q深度是4

树的度:一棵树中,最大的节点的度称为树的度; 如上图:树的度为6

叶子节点或终端节点:度为0的节点称为叶节点; 如上图:B、C、H、I...等节点为叶节点

双亲节点或父节点:若一个节点含有子节点,则这个节点称为其子节点的父节点; 如上图:A是B的父节点

孩子节点或子节点:一个节点含有的子树的根节点称为该节点的子节点; 如上图:B是A的孩子节点

根结点:一棵树中,没有双亲结点的结点;如上图:A

节点的层次:从根开始定义起,根为第1层,根的子节点为第2层,以此类推;

树的表现形式

 树结构相对线性表就比较复杂了,要存储表示起来就比较麻烦了,实际中树有很多种表示方式,如:双亲表示法, 孩子表示法、孩子兄弟表示法等等。我们这里就简单的了解其中最常用的孩子兄弟表示法。

A是val值

child是第一个孩子的引用,第一个孩子是B,所以引用了B这个节点

Node nextBrother下一个兄弟:因为A是根节点,没有兄弟,所以brother的值是null

到B之后,B的第一个孩子是D,兄弟是C,假设C没有兄弟,brother的值也是null

依次往下类推

树的应用

文件系统管理(目录和文件)

二叉树

一棵二叉树是结点的一个有限集合,该集合:

1.或者为空

2.或者是由一个根节点加上两棵别称为左子树和右子树的二叉树组成。

二叉树的每个节点要么有0个孩子,要么有1个孩子,要么有两个孩子 <=2

一棵树,如果是二叉树,那么他的每棵子树都是二叉树

二叉树不存在度大于2的截断

二叉树的子树有左右之分,次序不能颠倒,因此二叉树是有序树

两种特殊的二叉树 

1. 满二叉树: 一棵二叉树,如果每层的结点数都达到最大值,则这棵二叉树就是满二叉树。也就是说,如果一个二叉树的层数为K,且结点总数是2的k次方减1 ,则它就是满二叉树。

2. 完全二叉树: 完全二叉树是效率很高的数据结构,完全二叉树是由满二叉树而引出来的。对于深度为K的,有n个结点的二叉树,当且仅当其每一个结点都与深度为K的满二叉树中编号从1至n的结点一一对应时称之为完全二叉树。 要注意的是满二叉树是一种特殊的完全二叉树。

二叉树的性质 

1. 若规定根节点的层数为1,则一棵非空二叉树的第i层上最多有

2. 若规定只有根节点的二叉树的深度为1,则深度为K的二叉树的最大结点数是

3. 对任何一棵二叉树, 如果其叶结点个数为 n0, 度为2的非叶结点个数为 n2,则有n0=n2+1 

1和2比较简单,等比数列就可以推导出来

我们来推导一下公式3,

假设二叉树有N个节点,一棵二叉树,要么n0(表示叶子节点),要么n1,要N2

所以:N = n0+n1+n2

一个有N个节点的树,有N-1条边

边的总数等于:

度为0的节点,产生0条边

度为1的节点,产生n1条边

度为2的节点,产生n2条边

N-1 = n1 + 2*n2

n0+n1+n2 = n1 + 2*n2 -1

n0 = n2 + 1

得出结论:任何一棵二叉树,叶子节点比度为2的节点多一个

4. 具有n个结点的完全二叉树的深度k为 上取整

下图是向上取整

我们看一个题:

在具有2n个节点的完全二叉树中,叶子结点个数为()

A:n

B:n+1

C:n-1

D:n/2

选A

根据我们上面提出的结论:任何一棵二叉树,叶子节点比度为2的节点多一个

5. 对于具有n个结点的完全二叉树,如果按照从上至下从左至右的顺序对所有节点从0开始编号,则对于序号为i的结点有:

若i>0,双亲序号:(i-1)/2;i=0,i为根节点编号,无双亲节点

解释:
 

假设孩子节点的下标是i,那么双亲节点的下标是:

假设Ii为5,父亲节点为2,假设i为6,父亲节点为2

(i-1)/2

(5-1)/2 = 2

(6-1)/2 = 2

若2i+1<n,左孩子序号:2i+1,否则无左孩子

若2i+2<n,右孩子序号:2i+2,否则无右孩子

解释:

假设父亲节点的下标是i

左孩子:2i + 1

右孩子:2i + 2

二叉树的存储 

二叉树的存储结构分为:顺序存储和类似于链表的链式存储。

二叉树的链式存储是通过一个一个的节点引用起来的,常见的表示方式有二叉和三叉表示方式,具体如下:

二叉:孩子表示法

三叉:孩子双亲表示法

二叉树的创建 

前提:二叉树的创建是一个非常复杂的过程,前面的知识还不够让大家了解二叉树,所以现在先创建一个二叉树,这种创建方式只是我们前期使用,比较简单,不是正确的或者是常用的创建方式.

假设创建这棵树

class BTNode{
    public char val;
    public BTNode left;//左孩子的引用
    public BTNode right;//右孩子的引用

    public BTNode(char val){
        this.val = val;
    }
}
public class BinaryTree {
    public BTNode root;//根节点是属于二叉树的根,不是属于节点的根

    public BTNode createTree(){
        BTNode A = new BTNode('A');
        BTNode B = new BTNode('B');
        BTNode C = new BTNode('C');
        BTNode D = new BTNode('D');
        BTNode E = new BTNode('E');
        BTNode F = new BTNode('F');
        BTNode G = new BTNode('G');
        BTNode H = new BTNode('H');
        A.left = B;
        A.right = C;
        B.left = D;
        B.right = E;
        C.left = F;
        C.right = G;
        E.right = H;
        return A;

    }
}

这是一个简单的创建二叉树的方式

二叉树的遍历

二叉树的遍历,重点 》所有的二叉树相关的题目,基本都需要通过某种遍历来去解题的。

1.前序遍历(又叫先根遍历)

遇到根先打印,再打印左子树,在打印右子树

 2.中序遍历

先打印左子树,再打印根,再打印右子树

3.后序遍历

先打印左子树,再打印右子树,再打印根

写一个前序遍历的代码:

  //前序遍历
    public void preOrder(BTNode root){
        if(root == null){
            return;
        }
        System.out.println(root.val+ " ");
        preOrder(root.left);
        preOrder(root.right);
    }

 递归方式

二叉树的题天生就是用递归来写的,90%

打印结果:

我们来看一个题:

144. 二叉树的前序遍历 - 力扣(LeetCode)

第一种代码写法:遍历思路

class Solution {
    public List<Integer> preorderTraversal(TreeNode root) {
        List<Integer> list = new LinkedList<>();
        pre(list,root);
        return list;

    }
    public void pre(List<Integer> list,TreeNode root){
            if(root != null){
            list.add(root.val);
            pre(list,root.left);
            pre(list,root.right);
            }
            
        }
}

第二种解法:遍历思路

class Solution {
   List<Integer> list = new ArrayList<>();
    public List<Integer> preorderTraversal(TreeNode root) {
        
       if(root == null){
           return list;
       }
       list.add(root.val);
       preorderTraversal(root.left);
       preorderTraversal(root.right);
        return list;
    }           
        
}

第三种解法:子问题思路

class Solution {
  
    public List<Integer> preorderTraversal(TreeNode root) {
         List<Integer> list = new ArrayList<>();
       if(root == null){
           return list;
       }
       list.add(root.val);
    List<Integer> leftTree = preorderTraversal(root.left);
       list.addAll(leftTree);
    List<Integer> rightTree = preorderTraversal(root.right);
    list.addAll(rightTree);
        return list;
    }           
        
}

未完,待续......

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

K稳重

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值