【7000字超详细笔记】在使用M系列芯片的Mac上搭建合理的python开发环境

在使用M系列芯片的Mac上搭建合理的python开发环境

0. 前情提要

刚入手Macbook时候就了解到在Macbook上配置python会稍微有点麻烦,主要是因为系统自带了python,而且不少系统功能需要python支持;因此乱改自带python的环境,可能会造成意想不到的后果。所以网上的大神们也都建议不要使用mac自带的python。

不过现在回想起来,我当时并没有太在意这个事情,因为在win上开发python的经验告诉我,conda(虚拟环境)才是最优解,毕竟谁也不想把python装的“到处都是",把环境变量弄得”乱七八糟"。所以对于会用anaconda的我来说,系统自带的python本来也不会被使用到,我也并没有必要安装自带的python以外的其他python

不过事实证明,我在日常使用系统自带的python环境的频率非常高,一方面可以快捷的在命令行调用python完成一些科学计算,另一方面有一些很好用的小工具(例如m系列芯片专享的性能检测工具asitop,还有数据标注工具label-studio)也是基于python构建的,可以通过pip安装。

好用的asitop工具

所以不知不觉,我在系统自带的python环境下,也安装了不少第三方库,这也许是不好的行为(毕竟修改了系统自带的python环境),但是我并没有遇到什么问题,所以也还无感。

直到最近更新了macos15,在一次 pip install --upgrade pip(实际上我运行任何pip操作,都会有此提示)操作中观察到了意想不到的提示(Defaulting to user installation because normal site-packages is not writeable),这让我感到一丝不安。

让人不安的报错

虽然我也搞不清楚这样的报错信息,是一直都有,还是更新完新系统才有(后者的可能性似乎更大些,因为关于这条报错,CSDN上有人评价过这种情况确实多发于更新新系统之后);虽然这条信息看起来人畜无害,但如果不能解决或者弄清楚原因,始终让人感到不安。

因此最近忙里偷闲找时间梳理了mac上安装python的多种情况,同时也对这个报错信息的来源有了眉目,做个笔记记录下。笔记很多的观点只是个人猜想,并没有做严谨考证,欢迎大神指出错误。

1. 先说结论

如果你是M系列芯片的Mac电脑(我认为这点很重要,因为在搜索有关mac如何配置python的教程中,无论在CSDN还是Stack Overflow等平台,即使有一些很新的帖子,讨论的也还是基于Intel芯片的Macbook,这些老mac的系统版本甚至还是上古的OS X;而实际上目前很大一部分Mac用户使用的已经是基于M系列芯片的电脑了,但这两者在配置python方面有一定的区别),也就是说你的电脑自带的已经是python3(而不是老mac自带的python2),那么你电脑里的python也许应该这样配置,也就是有以下三类适用于不同场景的python

  • 系统自带的python(用于保障系统功能正常运行的python(版本似乎是3.9.6),平常不
### 配置和设置macOS上的Python开发环境 #### 使用预装的Python版本 现代macOS系统,例如配备M2芯片并运行Ventura系统的MacBook Air,已经预先安装了Python环境,并可以在默认的zsh终端中通过`python`命令访问[^1]。 然而,在某些情况下,默认提供的可能是较旧版本的Python(通常是Python 2.x),而新的项目可能依赖于更新版本的Python 3.x。因此,为了确保兼容性和获取最新特性支持,建议手动安装最新的稳定版Python 3.x。 #### 手动安装新版本的Python 对于希望使用特定版本或更高版本的开发者来说,可以从官方站点下载适用于macOS平台的Python发行包[^2]。完成安装之后,可以通过修改shell配置文件来创建别名,使得输入`python`时实际上调用的是`python3`: ```bash export PATH="/usr/local/bin:$PATH" alias python="/usr/local/bin/python3" ``` 这一步骤确保无论何时执行`python`指令都将指向已安装的新版本解释器而不是系统自带的老版本。 另外一种方法是指定具体的Python解释器路径作为别名,比如如果想要固定使用某个具体的小版本号,则可以这样做: ```bash alias python=/Library/Frameworks/Python.framework/Versions/3.11/bin/python3.11 ``` 这种方法特别适合那些需要严格控制所使用Python版本的应用场景[^4]。 #### Visual Studio Code中的Python环境配置 当涉及到IDE内的Python环境管理时,Visual Studio Code提供了一种简便的方式来进行此操作。只需编辑工作区下的`.vscode/settings.json`文件,并加入如下配置项即可指定要使用Python解释器: ```json { "python.pythonPath": "python3", } ``` 这里同样可以选择直接利用命令行工具识别到的`python3`解析程序;当然也允许填入完整的绝对路径以精确匹配所需的解释器实例[^5]。 #### 安装必要的库和支持软件 除了基本的语言环境外,很多应用还需要额外的支持组件才能正常运作。例如Selenium自动化测试框架及其对应的ChromeDriver浏览器驱动就需要单独安装。这类资源通常可通过pip工具在线获取,按照相关文档指导逐步完成这些附加模块的部署过程[^3]。
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值