- 博客(5)
- 收藏
- 关注
原创 NeRF相关文章的综述
NeRF 风格的网络可能很容易训练,因为它们采用基于体积的方法,但我已经看到了一种趋势,即作者试图在收敛后发现或猜测表面。:下面我首先讨论一些导致“NeRF 爆炸”的非常相关的相关工作,然后讨论我认为引发这一切的两篇论文,然后是有关后续工作的带注释的参考书目。除了这篇文章之外,上面提到的评论论文也是很好的背景。SLAM学术界的泰斗,Frank Dallaert(https://dellaert.github.io/),gtsam的作者,也开始转行研究NeRF,可见NeRF的价值和对视觉SLAM的意义。
2023-11-24 09:34:45 1115 1
原创 Nerf 编码
同样,当我们将 3D 坐标作为输入传递给 NeRF 的前馈网络时,我们不想直接使用这些坐标作为输入。这种位置编码方案与用于将位置信息添加到转换器内的标记化输入的技术完全相同[6]。给定一个将每个空间位置映射到该矩阵中的索引的函数,我们可以检索每个空间位置的相应嵌入并将其用作输入。有时,我们不想将数据直接输入到机器学习模型中,因此我们会传递该数据的编码版本作为输入。这是机器学习中的一个基本概念。NeRF 架构中的位置编码。在每种情况下,我们都会对输入进行编码/转换,使其采用更适合模型的格式。
2023-11-23 21:58:35 652
原创 NeRF(第一部分)
简而言之,这意味着我们可以使用单个前馈神经网络对多种不同类型的 3D 形状的基于 SDF 的表示进行编码,从而允许对这些形状进行表示、插值甚至从部分数据完成;从这些结果中,我们可以看到,潜在向量之间的插值产生了形状之间的平滑过渡,这表明 DeepSDF 嵌入的连续 SDF 是有意义的!使用此模型,我们可以轻松执行诸如生成形状的网格表示、从不完整或嘈杂的数据中恢复基础形状,甚至生成作为已知几何形状的插值的新形状等任务。为了获得更准确的表示,我们只需增加使用的体素数量,形成更精细的 3D 空间离散化。
2023-11-23 21:43:49 857
原创 NeRF 从头开始 :在计算机图形学背景下解释 NeRF
关键的优点是体积云可以是连续且可微的,我们可以使用标准体积渲染来计算生成图像的每个像素的颜色,这也是可微的操作。如果我们在训练期间重复采样相同的点,网络将在这些点上进行优化,而在新视图的推理过程中,如果我们采样训练时采样点以外的任何点,网络可能不会给出期望的结果。典型的例子有占用值(点是否属于表面的概率)、有符号距离场 SDF(点到 3D 表面的距离,如果点在表面之外,则距离为正,如果点在表面之外,则距离为负)。根据所涵盖的基础知识,我们可以将问题归因于基于图像的渲染,并学习 3D 模型来生成新图像。
2023-11-23 21:02:33 1178
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人