高维数据如何可视化?
答:高维指数据具有多个独立属性,多元指数据具有多个相关属性。
高维数据可视化可以有五种方法:
1.在二维/三维图表上增加视觉通道,以表达更多的属性信息。当维度超过三维后,可以增加视觉编码来表示,例如颜色、大小、形状、填充形式等。但对于更高维多元数据的可视化,这种方法还是很局限。
2.多视图协调关联: 不同的视图表示数据的一部分属性。
3.利用散点矩阵: 对于N维数据,使用N2个二维散点图逐一表示N个属性之间的两两关系。随着数据维度的增加,a散点图数量的增加导致可读性下降。
4.利用表格透镜: 类似于表,以图的形式显示表格中的数值。
1)排序与选择操作:易于发现分布规律与关联关系
2)焦点与上下文:关注的区域以图文强调
3)重组视图:移动属性列
5.利用平行坐标系: 平行的坐标轴表示不同维度,每个数据点对应一条穿过所有坐标轴的折线。
总结:
当维度低于10时 | 二维/三维图表上增加视觉通道;散点图矩阵;平行坐标 |
---|---|
当维度在10-100之间时 | 平行坐标,降维投影图 |
当维度在100以上时 | 降维投影图 |