机器学习 高维数据可视化

高维数据如何可视化?

答:高维指数据具有多个独立属性,多元指数据具有多个相关属性。

高维数据可视化可以有五种方法:

1.在二维/三维图表上增加视觉通道,以表达更多的属性信息。当维度超过三维后,可以增加视觉编码来表示,例如颜色、大小、形状、填充形式等。但对于更高维多元数据的可视化,这种方法还是很局限。

2.多视图协调关联: 不同的视图表示数据的一部分属性。

3.利用散点矩阵: 对于N维数据,使用N2个二维散点图逐一表示N个属性之间的两两关系。随着数据维度的增加,a散点图数量的增加导致可读性下降。

4.利用表格透镜: 类似于表,以图的形式显示表格中的数值。
1)排序与选择操作:易于发现分布规律与关联关系
2)焦点与上下文:关注的区域以图文强调
3)重组视图:移动属性列

5.利用平行坐标系: 平行的坐标轴表示不同维度,每个数据点对应一条穿过所有坐标轴的折线。

总结:

当维度低于10时二维/三维图表上增加视觉通道;散点图矩阵;平行坐标
当维度在10-100之间时平行坐标,降维投影图
当维度在100以上时降维投影图
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值