深度学习代码环境配置(编译器, git, anaconda)

文章介绍了GCC的安装与使用,包括Windows下的w64devkit和MinGW,以及Git的下载。此外,还详细阐述了如何获取和配置Miniconda来管理Python环境,并使用conda安装包。最后提到了Jupyter的使用,特别是其内建的魔法命令如%%timeit、%precision和%debug。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

一、内容

1. 编译器

  • gcc:GNU编译器套装
  • C++ builder
  • Microsoft Visual C++(MSVC):微软的VC编译器
  • MinGW(Minimalist GNU on Windows):可自由使用和自由发布的Windows特定头文件和使用GNU工具集导入库的集合,允许你在GNU/Linux和Windows平台生成本地的Windows程序而不需要第三方C运行时库。MinGw是windows版本的gcc集合

2. 版本控制

  • git

3. Python环境

  • Anaconda \ Miniconda

4. 安装python包或库

  • pythonn -m pip install ...
  • pip/conda install ...

5. jupyter 使用

二、GCC安装和使用

GCC是由GNU开发的编程语言译器。最近复现代码时需要编译源文件,总是报错,后来查验报错原因后,是由于电脑没能安装GCC。C 语言编译器用于把源代码编译成最终的可执行程序。

Windows

1. 使用w64devkit(免安装)

w64devkit 是 Windows 平台下使用的一个 C/C++ 跨平台编译环境。它可以在 Windows 上编译出能够在多个平台上运行的程序,例如:Windows, Linux, macOS。w64devkit 包含了大量的开源工具链和库,如 GCC,Binutils,Mingw-w64,MSYS2 等等。它可以提供一个强大的编译环境,使得 Windows 平台的程序员们能够更容易地开发跨平台的程序。
https://github.com/skeeto/w64devkit/releases/

2. 环境变量设置

3. 测试

gcc -v

三、Git下载

Git - Downloads

免安装版本直接配置环境变量即可

四、conda环境

1. 获取miniconda

wget https://repo.continuum.io/miniconda/Miniconda3-latest-Linux-x86_64.sh
bash Miniconda3-latest-Linux-x86_64.sh
echo ". /USER/miniconda3/etc/profile.d/conda.sh" >> ~/.bashrc
echo ". /USER/miniconda3/etc/profile.d/conda.sh" >> ~/.benv
source ~/.benv

安装包完成后清楚安装包,Once the installation is finished, to recover some disk space we can clear the package tarballs Conda just downloaded:

conda clean -t

五、jupyter使用

Magics

There are a range of magic commands in IPython notebooks, than provide helpful tools outside of the usual Python syntax. A full list of the inbuilt magic commands is given here, however three that are particularly useful for this course:

  • %%timeit Put at the beginning of a cell to time its execution and print the resulting timing statistics.
  • %precision Set the precision for pretty printing of floating point values and NumPy arrays.
  • %debug Activates the interactive debugger in a cell. Run after an exception has been occured to help diagnose the issue.

# use the matplotlib magic to specify to display plots inline in the notebook

%matplotlib inline

### 设置WSL中的深度学习环境 #### 安装必要的依赖项 为了在WSL中构建一个完整的开发环境,首先要确保已安装了所需的软件包。对于基于Ubuntu的系统来说,可以更新现有的包列表并安装一些基础工具: ```bash sudo apt update && sudo apt upgrade -y sudo apt install build-essential cmake git libgtk2.0-dev pkg-config python3-pip python3-setuptools python3-wheel unzip wget curl vim htop tmux screen -y ``` 上述命令会安装编译器、版本控制系统Git以及其他常用库和实用程序[^1]。 #### Miniconda 的安装与配置 Miniconda 是 Anaconda 发行版的一个轻量级替代品,它允许创建独立的Python环境而不会干扰系统的其他部分。下载并执行最新的Miniconda安装脚本如下所示: ```bash wget https://repo.continuum.io/miniconda/Miniconda3-latest-Linux-x86_64.sh -O ~/miniconda.sh bash ~/miniconuda.sh -b -p $HOME/miniconda rm ~/miniconda.sh echo 'export PATH="$HOME/miniconda/bin:$PATH"' >> ~/.bashrc source ~/.bashrc ``` 这将在用户的主目录下建立一个新的`miniconda`文件夹作为Anaconda的基础路径,并将其加入到shell环境中以便随时调用。 #### GPU 支持的准备 要使CUDA能够在WSL上正常工作,需先确认主机已经正确设置了NVIDIA驱动程序和支持组件。接着,在Linux子系统内部按照官方指南完成相应的设置过程。具体操作包括但不限于: - 添加 NVIDIA package repositories 到 APT sources list. - 更新APT缓存并安装特定于目标架构的CUDA Toolkit. ```bash distribution=$(. /etc/os-release;echo $ID$VERSION_ID) curl -s -L https://nvidia.github.io/nvidia-docker/gpgkey | sudo apt-key add - curl -s -L https://nvidia.github.io/nvidia-docker/$distribution/nvidia-docker.list | sudo tee /etc/apt/sources.list.d/nvidia-docker.list sudo apt-get update && sudo apt-get install -y nvidia-container-toolkit sudo systemctl restart docker ``` 以上步骤假设读者正在使用支持的Linux发行版之一;如果选择了不同的操作系统,则可能需要调整这些说明以匹配所选平台的要求[^2]。 #### PyTorch 和 cuDNN 的安装 一旦完成了前面提到的所有准备工作之后,就可以继续安装PyTorch及其配套件cuDNN了。推荐的方式是从官方网站获取预编译好的二进制文件或者利用Conda渠道简化流程: ```bash conda create --name torch_env python=3.9 conda activate torch_env pip install torch torchvision torchaudio cudatoolkit=11.3 -f https://download.pytorch.org/whl/cu113/torch_stable.html ``` 这里创建了一个名为 `torch_env`的新环境,并指定了 Python 版本为 3.9 。随后激活该环境并通过 pip 下载适合当前硬件条件的最佳组合形式的 PyTorch 软件包集合。 #### 测试安装成果 最后一步是对新近部署的服务进行验证,确保一切按预期运作无误。一种简单的方法就是尝试运行一段简单的代码片段来检验是否能够成功加载GPU资源: ```python import torch print(torch.cuda.is_available()) device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') tensor = torch.rand(3, 3).to(device) print(tensor) ``` 这段小程序将会打印出设备状态以及随机生成张量的内容,以此证明GPU加速功能已被启用并且处于良好状态。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值