Spring Ai 对接智谱清言结合vue(清测成功)

智谱文档:智谱AI开放平台

注意:springboot版本要在3.0以上,pom.xml要配置下载的源。

pml文件如下

建议使用下科学上网~~~ 

<?xml version="1.0" encoding="UTF-8"?>
<project xmlns="http://maven.apache.org/POM/4.0.0" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
         xsi:schemaLocation="http://maven.apache.org/POM/4.0.0 https://maven.apache.org/xsd/maven-4.0.0.xsd">
    <modelVersion>4.0.0</modelVersion>
    <parent>
        <groupId>org.springframework.boot</groupId>
        <artifactId>spring-boot-starter-parent</artifactId>
        <version>3.3.4</version>
        <relativePath/> <!-- lookup parent from repository -->
    </parent>
    <groupId>com.example</groupId>
    <artifactId>ai-puzhi</artifactId>
    <version>0.0.1-SNAPSHOT</version>
    <name>ai-puzhi</name>
    <description>ai-puzhi</description>
    <url/>
    <licenses>
        <license/>
    </licenses>
    <developers>
        <developer/>
    </developers>
    <scm>
        <connection/>
        <developerConnection/>
        <tag/>
        <url/>
    </scm>
    <properties>
        <project.build.sourceEncoding>UTF-8</project.build.sourceEncoding>
        <project.reporting.outputEncoding>UTF-8</project.reporting.outputEncoding>
        <fastjson2.version>2.0.52</fastjson2.version>
        <java.version>17</java.version>
        <spring-ai.version>1.0.3</spring-ai.version>
        <testcontainers.version>1.20.1</testcontainers.version>
    </properties>
    <dependencyManagement>
        <dependencies>
            <dependency>
                <groupId>org.springframework.ai</groupId>
                <artifactId>spring-ai-bom</artifactId>
                <version>1.0.0-M1</version>
                <type>pom</type>
                <scope>import</scope>
            </dependency>
        </dependencies>
    </dependencyManagement>
    <dependencies>
        <!-- For Lombok -->
        <dependency>
            <groupId>org.projectlombok</groupId>
            <artifactId>lombok</artifactId>
        </dependency>
        <!-- For Commons -->
        <dependency>
            <groupId>org.apache.commons</groupId>
            <artifactId>commons-lang3</artifactId>
        </dependency>
        <!-- For Caffeine -->
        <dependency>
            <groupId>com.github.ben-manes.caffeine</groupId>
            <artifactId>caffeine</artifactId>
        </dependency>
        <!-- For FastJson2 -->
        <dependency>
            <groupId>com.alibaba.fastjson2</groupId>
            <artifactId>fastjson2</artifactId>
            <version>${fastjson2.version}</version>
        </dependency>
        <dependency>
            <groupId>io.springboot.ai</groupId>
            <artifactId>spring-ai-zhipu-ai-spring-boot-starter</artifactId>
            <version>${spring-ai.version}</version>
        </dependency>
        <dependency>
            <groupId>cn.bigmodel.openapi</groupId>
            <artifactId>oapi-java-sdk</artifactId>
            <version>release-V4-2.0.2</version>
            <scope>test</scope>
        </dependency>
        <!-- For Web Server -->
        <dependency>
            <groupId>org.springframework.boot</groupId>
            <artifactId>spring-boot-starter-web</artifactId>
            <exclusions>
                <exclusion>
                    <artifactId>spring-boot-starter-tomcat</artifactId>
                    <groupId>org.springframework.boot</groupId>
                </exclusion>
            </exclusions>
        </dependency>

        <dependency>
            <groupId>org.springframework.boot</groupId>
            <artifactId>spring-boot-starter-undertow</artifactId>
        </dependency>
        <dependency>
            <groupId>org.springframework.boot</groupId>
            <artifactId>spring-boot-starter-test</artifactId>
            <scope>test</scope>
        </dependency>
        <dependency>
            <groupId>org.springframework.boot</groupId>
            <artifactId>spring-boot-devtools</artifactId>
            <scope>test</scope>
        </dependency>

    </dependencies>

<!--    配置下载地址-->
    <!-- 设定远程主仓库,按设定顺序进行查找。 -->
    <repositories>
        <repository>
            <id>spring-milestones</id>
            <name>Spring Milestones</name>
            <url>https://repo.spring.io/milestone</url>
            <snapshots>
                <enabled>false</enabled>
            </snapshots>
        </repository>
        <repository>
            <id>spring-snapshots</id>
            <name>Spring Snapshots</name>
            <url>https://repo.spring.io/snapshot</url>
            <releases>
                <enabled>false</enabled>
            </releases>
        </repository>
        <repository>
            <id>central</id>
            <name>Maven Central</name>
            <url>https://repo.maven.apache.org/maven2</url>
        </repository>
    </repositories>
    <build>
        <plugins>
            <plugin>
                <groupId>org.springframework.boot</groupId>
                <artifactId>spring-boot-maven-plugin</artifactId>
                <configuration>
                    <excludes>
                        <exclude>
                            <groupId>org.projectlombok</groupId>
                            <artifactId>lombok</artifactId>
                        </exclude>
                    </excludes>
                </configuration>
            </plugin>
        </plugins>
    </build>

</project>

yml配置文件

spring:
  application:
    name: ai-puzhi
  ai:
    zhipuai:
      api-key: 82770a63b944ae2789b679332cf32
#      model: glm-4-plus
      model: codegeex-4
    retry:
      backoff:
        max-interval: 3000
        multiplier: 2
        initial-interval: 2000
server:
  port: 9090

 获取key地址:智谱AI开放平台

主要代码

@RestController
@CrossOrigin
public class ChatController {

    private final ZhipuAiChatClient chatClient;

    @Autowired
    public ChatController(ZhipuAiChatClient chatClient) {
        this.chatClient = chatClient;
    }

    @GetMapping(value = "/v1/generate", produces = "application/json")
    public Map generate(@RequestParam(value = "message", defaultValue = "Tell me a joke") String message) {
        String call = chatClient.call(message);


        System.out.println(call);
        return Map.of("generation", call);
    }

    @GetMapping("/v1/prompt")
    public List<Generation> prompt(@RequestParam(value = "message", defaultValue = "Tell me a joke") String message) {
        PromptTemplate promptTemplate = new PromptTemplate("Tell me a {adjective} joke about {topic}");
        Prompt prompt = promptTemplate.create(Map.of("adjective", "funny", "topic", "cats"));
        return chatClient.call(prompt).getResults();
    }

    @GetMapping("/v1/chat/completions")
    public Flux<ChatResponse> chatCompletions(@RequestParam(value = "message", defaultValue = "Tell me a joke") String message) {
        Prompt prompt = new Prompt(new UserMessage(message));
        return chatClient.stream(prompt);
    }

    @GetMapping("/v1/chat/completionsTow")
    public SseEmitter chatCompletionsTow(@RequestParam(value = "message", defaultValue = "Tell me a joke") String message) {
        SseEmitter emitter = new SseEmitter();
        Prompt prompt = new Prompt(new UserMessage(message));
        // 订阅Flux并处理数据
        chatClient.stream(prompt).subscribe(
                data -> {
                    try {
                        emitter.send(data);
                    } catch (IOException e) {
                        emitter.completeWithError(e);
                    }
                },
                emitter::completeWithError,
                emitter::complete
        );
        return emitter;
    }


    @PostMapping("/v1/chat/completionsPost")
    public Flux<ChatResponse> completionsPost(@RequestBody Message msg) {
        Prompt prompt = new Prompt(new UserMessage(msg.getMsg()));

        return chatClient.stream(prompt);
    }


    @PostMapping(value = "/completionsPost", produces = MediaType.TEXT_EVENT_STREAM_VALUE)
    public void completionsPost(@RequestBody Message msg, HttpServletResponse response) throws IOException {
        Prompt prompt = new Prompt(new UserMessage(msg.getMsg()));
        // 获取 SSE 的 flux 流
        Flux<ChatResponse> flux = chatClient.stream(prompt);

        // 设置必要的 SSE 头部
        response.setHeader("Cache-Control", "no-cache");
        response.setHeader("Connection", "keep-alive");
        response.setHeader("Content-Type", "text/event-stream");

        // 获取响应输出流
        PrintWriter writer = response.getWriter();
        flux.doOnNext(chatResponse -> {
                    try {
                        // 将 ChatResponse 转换为 SSE 格式并写入响应流
                        Generation result = chatResponse.getResult();
                        AssistantMessage output = result.getOutput();
                        String content = output.getContent();
                        System.out.println("content: " + content);
                        writer.write("data: " + content + "\n\n");
                        writer.flush();
                    } catch (Exception e) {
                        // 处理异常
                        e.printStackTrace();
                    }
                })
                .doOnError(throwable -> {
                    try {
                        // 在出现错误时关闭响应流
                        writer.write("event: error\ndata: " + throwable.getMessage() + "\n\n");
                        writer.flush();
                        writer.close();
                    } catch (Exception e) {
                        // 处理异常
                        e.printStackTrace();
                    }
                })
                .doOnComplete(() -> {
                    try {
                        // 在流完成时关闭响应流
                        writer.write("event: complete\ndata: Stream completed\n\n");
                        writer.flush();
                        writer.close();
                    } catch (Exception e) {
                        // 处理异常
                        e.printStackTrace();
                    }
                })
                .subscribe(); // 订阅以启动流
    }


    @PostMapping(value = "/completionsPostNew", produces = MediaType.TEXT_EVENT_STREAM_VALUE)
    public SseEmitter completionsPostNew(@RequestBody Message msg, HttpServletResponse response) {
        SseEmitter emitter = new SseEmitter();
        UserMessage userMessage = new UserMessage(msg.getMsg());
        SystemMessage systemMessage = new SystemMessage("你是一位智能编程助手,你叫CSBlogAi。你会为用户回答关于编程、代码、计算机方面的任何问题," +
                "并提供格式规范、可以执行、准确安全的代码,并在必要时提供详细的解释。" +
                "任务:请为输入代码提供格式规范的注释,包含多行注释和单行注释," +
                "请注意不要改动原始代码,只需要添加注释。 请用中文回答。");
        List<org.springframework.ai.chat.messages.Message> messages = List.of(userMessage, systemMessage);
        Prompt prompt = new Prompt(messages);
        // 设置响应头
        response.setContentType(MediaType.TEXT_EVENT_STREAM_VALUE);
        // 订阅Flux并处理数据
        chatClient.stream(prompt).subscribe(
                data -> {
                    try {
                        // 发送 JSON 格式的 SSE 事件
                        emitter.send(data);
                    } catch (IOException e) {
                        emitter.completeWithError(e);
                    }
                },
                emitter::completeWithError,
                emitter::complete
        );
        return emitter;
    }

}

前端主要代码

//get使用 
getChatCompletions() {
        // 关闭之前的SSE连接(如果存在)
        if (this.eventSource) {
          this.eventSource.close();
        }
        let msg = this.userInput.replace(/\s+/g, '')
        let url = `http://localhost:9090/v1/chat/completionsTow?message=${msg}`
        // // 创建一个新的EventSource连接
        this.eventSource = new EventSource(url);
        let user = this.$store.state.UserInfo
        let userObj = {
          user: {
            userName: user.nickname,
            avatar: user.avatar,
            content: this.userInput
          },
          chat: {
            avatar: "https://blog-chen.oss-cn-shanghai.aliyuncs.com/favicon.ico",
            aiName: "CsBlog-Ai",
            content: []
          }
        }
        this.chatResponses.push(userObj)
        this.userInput = ''; // 清空输入框
        // 监听消息事件
        this.eventSource.onmessage = event => {
          const chatResponse = JSON.parse(event.data);
          if (chatResponse.result.output.content.trim() != '') {
            // 获取最后有的数组
            let length = this.chatResponses.length
            this.chatResponses[length - 1].chat.content.push(chatResponse.result.output.content)
            // this.chatResponses.push(chatResponse.result.output.content);
            this.$nextTick(() => {
              prism.highlightAll();// 全局代码高亮
              // 滚动到底部
              this.observeContentChanges()
            });
          }
        };
        // 监听错误事件
        this.eventSource.onerror = error => {
          // 将chatResponses添加到localStorage中
          console.log("关闭eventSource");
          if (this.chatResponses.length != 0) {
            localStorage.setItem(user.id, JSON.stringify(this.chatResponses))
          }
          this.eventSource.close();
        };
      },
//post使用
      SendAi() {
        this.abortController = new AbortController();
        const signal = this.abortController.signal;
        console.log(signal);
        // 添加到数组中
        let user = this.$store.state.UserInfo
        let userObj = {
          user: {
            userName: user.nickname,
            avatar: user.avatar,
            content: this.userInput
          },
          chat: {
            avatar: "https://blog-c",
            aiName: "CsBlog-Ai",
            content: []
          }
        }
        this.chatResponses.push(userObj)
        let sendMsg = this.userInput.replace(/\s+/g, '')
        this.userInput = ''; // 清空输入框
        fetchEventSource('http://localhost:9090/completionsPostNew', {
          method: 'POST',
          headers: {
            'Content-Type': 'application/json',
            'Cache-Control': 'no-cache',
            'Connection': 'keep-alive'
          },
          body: JSON.stringify({ msg: sendMsg }),
          onmessage: (event) => {
            const chatResponse = JSON.parse(event.data);
            if (chatResponse.result.output.content.trim() != '') {
              // 获取最后有的数组
              let length = this.chatResponses.length
              this.chatResponses[length - 1].chat.content.push(chatResponse.result.output.content)
              this.$nextTick(() => {
                prism.highlightAll();// 全局代码高亮
                // 滚动到底部
                this.observeContentChanges()
              });
            }
          },
          onopen: async (response) => {
            if (response.ok && response.headers.get('content-type') === 'text/event-stream') {
              return; // 连接成功
            } else if (response.status >= 400 && response.status < 500 && response.status === 429) {
              this.abortController.abort();
              throw new Error('Client-side error');
            } else {
              this.abortController.abort();
              throw new Error('Retriable error');
            }
          },
          onerror: (event) => {
            if (event.target.readyState === EventSource.CLOSED) {
              console.error('Connection was closed by the server.');
            } else {
              console.error('Error occurred:', event);
            }
          },
          onclose: () => {
            if (this.chatResponses.length != 0) {
              localStorage.setItem(user.id, JSON.stringify(this.chatResponses))
            }
            console.log('Connection closed.');
          },
          signal: signal
        });
      }
    },
    beforeDestroy() {
      this.abortController.abort();
    },

 需要源码的私信~~~

### Spring Boot 3.4.4 和 Vue 2 的 AI 集成方案 #### 技术选型与背景说明 Spring Boot 提供了一种快速开发 Java 应用程序的方式,而 Vue 2 则是一种流行的前端框架用于构建交互式的用户界面。当涉及到 AI 功能时,通常会引入 TensorFlow 或其他机器学习库来处理复杂的计算逻辑[^1]。 为了实现 Spring Boot 后端服务与 Vue 前端之间的无缝协作,并支持 AI 接口调用,可以按照以下方式设计系统架构: --- #### 系统架构概述 后端部分主要负责数据存储、业务逻辑以及模型推理的服务化暴露;前端则专注于展示层的设计和用户体验优化。具体来说: - **后端**:基于 Spring Boot 构建 RESTful API 来接收来自客户端的请求并返回相应的响应数据。 - **前端**:使用 Vue.js 实现动态页面加载及表单提交等功能,同时通过 HTTP 请求访问远程服务器上的资源。 此外,在某些情况下可能还需要额外部署 GPU 加速设备以提升深度学习算法运行速度[^5]。 --- #### 开发准备阶段 在正式编码之前,请先确认已安装好必要的依赖项,比如 JDK 版本需达到至少 8u202 及以上标准才能正常使用最新版本的 Spring Framework 软件包[^2] 。对于 Python 方面,则可通过命令 `pip3 install tensorflow` 完成 TensorFlow 库文件下载工作[^4] 。 --- #### 数据传输协议定义 考虑到安全性因素以及跨域资源共享(CORS)限制等问题的存在 ,建议采用 JSON 格式作为消息体交换媒介之一。这样不仅可以简化序列化进程还能增强兼容性程度[^3] 。 以下是关于如何创建一个简单的 POST 方法示例代码片段: ```java @RestController @RequestMapping("/api/v1/ai") public class AiController { @PostMapping(value = "/predict", consumes = MediaType.APPLICATION_JSON_VALUE, produces = MediaType.APPLICATION_JSON_VALUE) public ResponseEntity<Map<String,Object>> predict(@RequestBody Map<String,String> payload){ String inputText=payload.get("text"); // Call ML Model Service Here... double result=doModelInference(inputText); HashMap<String , Object> resultMap=new HashMap<>(); resultMap.put("status","success"); resultMap.put("data",result); return new ResponseEntity<>(resultMap HttpStatus.OK); } } ``` 上述例子展示了怎样接受从前端传递过来的数据结构(`payload`) 并将其解析为字符串变量 (`inputText`).之后再调用内部方法执行实际预操作最后把结果打包回传给调用方. 对应的 JavaScript (Vue Component): ```javascript methods:{ async sendRequest(){ const inputData={ text:"Sample Input For Testing"}; try{ let res=await axios.post('/api/v1/ai/predict',inputData,{ headers:{'Content-Type':'application/json'} }); console.log(res.data); }catch(err){ console.error('Error Occurred:',err.message); } } } ``` 在这里我们运用 Axios 库发起异步网络通信过程并将接收到的信息打印出来以便调试查看效果. --- #### 性能考量要点 由于人工智能任务往往伴随着较高的计算负载因此有必要采取措施降低延迟时间提高吞吐率例如缓存热点查询结果或者利用分布式集群扩展服务能力等等. 另外值得注意的是如果目标平台涉及移动终端那么还应该特别关注电池消耗情况从而调整策略尽量减少不必要的开销影响最终用户的体验感受. ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值