计算机毕业设计基于YOLOv8的头盔检测系统

1、安装Anaconda

官网下载或者哔哩哔哩有的up分享

https://www.anaconda.com/download

版本无所谓,安装位置不要有中文就行

2、创建环境yolov8

win+R打开命令行

conda create -n yolov8 python=3.9

3、打开源码

下载下来放到你想放的目录,直接用pyCharm或者vscode 打开就行,这里演示用pyCharm

比如:我的目录是D:\Users\YOLO\ultralytics-main

4、下载依赖

1、打开cmd

2、激活环境

conda activate yolov8

3、切换项目地址到你的目录,我的是D:\Users\YOLO\ultralytics-main

如果你的项目在d盘
d:
cd 绝对路径

4、执行以下命令

pip install -r requirements.txt -i https://pypi.tuna.tsinghua.edu.cn/simple

5、如果你的是gpu训练,查看cuda版本,我的是11.8,如果你的大于或者等于这个版本,直接执行以下命令,否则安装Pytorch时要找对应以下版本,可以打开Pytorch官网

#cuda 查看命令
nvidia-smi
#pyTorh官网
https://pytorch.org/get-started/previous-versions/
pip install torch==1.13.1+cu116 torchvision==0.14.1+cu116 torchaudio==0.13.1 --extra-index-url https://download.pytorch.org/whl/cu116

5、配置项目

1、打开settings

2、找到Python Interpreter

找到你的conda环境,应用

6、项目说明

1、可视化运行

        找到MainProgram.py文件,右键运行即可

2、训练模型

        找到yolov8-train-helmets.py文件,代码一看就懂的

3、更改可视化界面

        UIProgram下的UiMain.py文件,可以写学号题目之类的,证明是你写的

4、更改网络结构

        ultralytics>cfg>models>v8>yolov8.yaml

        yolov8.yaml是原网络

        yolov8-cbam.yaml是添加注意力机制后的

        如果你想添加可变形卷积,可以试试,代码我已经写好的,添加到网络就行

5、runs>detect

        result下有添加CBAM和原网络训练过程对比图

        train下是添加CBAM的训练结果

        train2是原网络结果

        train7是yolov8n.pt预训练模型的结果

        你也可以重新训练下

6、datasets是数据集        

7、结果展示

提供图片检测、图片批量检测、视频检测、摄像头检测以及结果保存

8、项目优势

1、使用CBAM改进了网络,有很明显的涨点,这里只展示下训练过程图

除此之外还有

2、使用了两种数据增强 Mosaic和Albumentations

 

 最重要的:有了两种改进措施,作为毕业设计不会有工作量不够的问题

9、资源获取

微信公众号:阿普同学 

优势:数据集+项目文件+改进网络结构+答辩ppt 毕业无忧

微信公众号回复001获取提取码链接:https://pan.baidu.com/s/1sXoP96zPyN7qDH_1C9My0Q 

### 基于YOLOv8毕业设计方案 #### 计方案概述 选择YOLOv8作为主要模型进行车牌检测,得益于该模型在处理速度和识别准确率上的显著优势[^2]。此模型特别适用于高动态变化以及实时视频流场景中的目标检测任务。 #### 实现方法 ##### 数据集准备 为了训练一个高效的车牌检测系统,需要收集并标注大量的车牌图像数据集。这些图片应覆盖不同的光照条件、天气状况及角度,以增强模型泛化能力。对于不同国家和地区特有的车牌样式(如字体、大小、格式),也需要专门的数据来支持定制化的优化需求。 ##### 模型调整与优化 针对具体应用场景的特点,可以通过修改网络结构参数或引入新的损失函数等方式对原始YOLOv8框架做出适当改进。例如,在保持原有高效特性的基础上增加一些辅助分支用于捕捉更细粒度的信息;或是采用自定义激活函数提高非线性表达力等措施提升整体性能表现[^1]。 ```python import torch from ultralytics import YOLO model = YOLO('yolov8n.yaml') # 加载预训练权重文件 results = model.train(data='custom_dataset', epochs=100, batch_size=16) # 训练过程配置 ``` ##### 测试与验证 完成初步训练之后,应当利用独立测试集合评估最终版本的表现情况,并记录下各项指标得分以便后续对比分析。如果可能的话还可以尝试部署到真实环境中去检验系统的稳定性和实用性价值所在。 #### 参考资料整理 - **官方文档**:Ultralytics团队发布的YOLO系列最新版教程和技术白皮书是最权威的第一手资源; - **学术论文**:查阅有关计算机视觉领域内最新的研究成果可以帮助理解背后原理及其发展趋势; - **开源社区贡献者分享的经验贴子**:GitHub Issues页面里经常会有开发者们交流心得技巧的地方值得借鉴学习。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值