乘法逆元笔记(等以后遇到例题再加,现在就6道^_^)

拓展欧几里得求逆元

求从1-n中mod p的逆元

inline ll exgcd(ll a,ll b,ll &x,ll &y){
  return !b?(x=1,y=0,a):(exgcd(b,a%b,y,x),y-= (a/b)*x);
}

int main(){
    ll n,p;
    cin>>n>>p;
    for(ll i=1;i<=n;i++){
        ll j,k;
        //ij≡1(mod p)  ij+p(-k)=1
        ll d=exgcd(i,p,j,k);
        k=-k;
        j=(j%p+p)%p;
        cout<<j<<endl;
    }
}

快速幂求逆元

ij≡1(mod p)由费马小定理知ij≡i^(p-1)(mod p),即j≡i^(p-2)(mod p)

然后就开始快乐的快速幂把

!!!!!快速幂只限于p是素数的情况!!!!!

ll qpow(ll x,ll n,ll p){//x^n mod p
    x%=p;
    ll ans=1;
    while(n){
        if(n&1)ans=qmul(x,ans,p);
        n/=2;
        x=qmul(x,x,p);
    }
    return ans;
}

int main(){
    ll n,p;
    cin>>n>>p;
    for(ll i=1;i<=n;i++){
        ll j;
        j=qpow(i,p-2,p);
        cout<<j<<endl;
    }
}

上述两种方法求线性逆元都较慢,下给出线性逆元求法

这里记对于每个i的乘法逆元为i^{-1}(事实上也就是这么写的),所以我们只需要求i^{-1}.

首先我们有一个,1^{-1}=1 ( modp ),然后设 p=k*i+r,(1<r<i<p)

则k*i+r≡0(mod p)

然后乘上i^{-1},r^{-1}就可以得到:

k*r^{-1}+i^{-1}≡0(mod p)

i^{-1}≡−k∗r^{-1}(modp),即i^{-1}≡−⌊p/i​⌋∗(p%i)^{-1}(modp)

于是,我们就可以从前面推出当前的逆元了。

1.递推公式为inv[i]=-(p/i)*inv[p%i]

(这里注意到前面一项为负数,进行一下体调整)

2.inv[i]=(p-p/i)*inv[p%i]

(这里加上了一个p*inv[p%i],但由于是mod p不会影响)

3.inv[i]=(p-p/i)*inv[p%i]%p   //最终递推公式

根据题目的i的规模,可以采用记忆化递推进行优化

    ll p,n;//multiplicative inverse
    cin>>n>>p;
    inv[1]=1;inv[0]=0;
    for(ll i=2;i<=n;i++){
        inv[i]=inv[p%i]*(p-p/i)%p;
    }

ps:当 inv[i]=0时,表示不存在乘法逆元

下面是一些例题和题解

 P1082 [NOIP2012 提高组] 同余方程

#include<bits/stdc++.h>
using namespace std;
#define ll long long
#define LOCAL

inline ll exgcd(ll a,ll b,ll &x,ll &y){
  return !b?(x=1,y=0,a):(exgcd(b,a%b,y,x),y-= (a/b)*x);
}

int main(){
    ll a,b,x,k;
    cin>>a>>b;
    //ax≡1(mod b)  ax+bk=1
    //ax≡a^b-1(mod b) x≡a^b-2(mod b)
    ll d=exgcd(a,b,x,k);
    x=(x%b+b)%b;
    cout<<x;
}

P3811 【模板】乘法逆元(线性求逆元)

#include<bits/stdc++.h>
using namespace std;
#define ll long long
ll inv[3000010];
int main(){
    ll p,n;
    scanf("%lld%lld",&n,&p);
    inv[1]=1;inv[0]=0;
    for(ll i=2;i<=n;i++) inv[i]=inv[p%i]*(p-p/i)%p;
    for(ll i=1;i<=n;i++) printf("%lld\n",inv[i]);
}

第一次用cin,cout被卡了 。。。。。。 

P2054 [AHOI2005]洗牌 

根据题目意思有下图(李姐一下,蹩脚的画图技术)

 1.首先令n=2k,原位置L,洗牌后的位置L';

2.1当L>k时 L'=(L-k)*2-1=2L-n-1

2.2当1=<L<=k时 L'=2L

3.则L'≡2L(mod n+1)

 1.设初始位置为P,末位置为L(已知)也就是P*2^{M}≡L(mod n+1)

2.P≡L*(2^{M})^{-1}(mod n+1),下面只用求2^{M}的乘法逆元即可

3.记2^{M}≡r(mod n+1)(这里使用快速幂求r)

4.然后就是最简单的乘法逆元了

 又是被文件重复定向坑的一天

用longlong洛谷只有84,最后一组数据会爆longlong 

这里用了__int128,注意输入输出要用快读快写

上述ll代表__int128,因为之前是用longlong 错了,懒得改了

 P4071 [SDOI2016]排列计数

题目:求有多少种 1 到 n的排列 a,满足序列恰好有 m 个位置,使得 a_i =i。答案对 10^9 + 7取模。

注意1e9+7是十位数中第一个素数(所以可以快速幂了)

考虑恰有m个位置a_i !=i,那么对于j+1个位置不同分3类,这里从n个数中选了m个位置不同,则共有C_{n}^{m}种取法,记m个位置均不满足a_i =i的取法有A_{m} 种

1.前j个元素均满足题设,将j+1与前j个数中的任意一个交换得到j+1个位置不同的序列,也就是j*A_{j}

 

2. 前j个元素中仅j-1个满足题设,j*A_{j-1}

 

 3. 前j个元素中小于j-1个满足题设,那么新引入的j+1,与前面不满足题设的位置交换,肯定至少还剩1个位置不满足,也就是这样的排列是不行的

综上A_{j+1}=j*(A_{j}+A_{j-1}),其中A_{1}=0A_{2}=1

 超时代码!!!!!!洛谷60分

#include<bits/stdc++.h>
using namespace std;
#define ll long long

inline ll read(){
    char ch=getchar();ll s=0,w=1;
    while(ch<48||ch>57)
        if(ch=='-')w=-1;ch=getchar();
    while(ch>=48&&ch<=57)
        s=(s<<1)+(s<<3)+ch-48;ch=getchar();
    return s*w;
}

inline ll qmul(ll a,ll b,ll mod){//a*b mod mod
    ll ans=0;
    while(b){
        if (b&1)ans=(ans+a)%mod;
        b>>=1;
        a=a<<1%mod;
    }
    return ans;
}

inline void write(ll x){
    if(x<0)putchar('-'),x=-x;
    if(x>9)write(x/10);
    putchar(x%10+'0');
}

const ll p=1e9+7;
ll inv[1000005],A[1000005],step[1000005];

int main(){
    ll T;
    T=read();
    inv[1]=1,inv[0]=1,A[0]=1,A[2]=1,step[1]=1;

    //A[i]=(i-1)(A[i-1]+A[i-2]) i>=3;
    for(ll i=3;i<=1e6+5;i++)
        A[i]=qmul(i-1,A[i-1]+A[i-2],p);

    //求组合数的模
    //注意到组合数中有除法,由于除法的模时候没有意义的,所以这时候就要求逆元
    //所以只需求1到m的乘法逆元,由于是线性的,用线性求逆元的方法
    for(ll i=2;i<=1e6+5;i++)
        inv[i]=inv[p%i]*(p-p/i)%p;
    
    //这里求了inv[i]!的模
    for(ll i=2;i<=1e6+5;i++)
        inv[i]=inv[i]*inv[i-1]%p;
        
    //i!的模
    for(ll i=2;i<=1e6+5;i++)
        step[i]=step[i-1]*i%p;

    while(T--){
        ll n,m,c_mod=1;
        n=read(),m=read();
        c_mod=qmul(inv[n-m],inv[m],p);
        c_mod=qmul(c_mod,step[n],p);
        write(qmul(c_mod,A[n-m],p));putchar('\n');
    }
}

然后我把qmul删了 ,因为这题好像不会爆long long ,然后就快乐ac了哈哈哈

#include<bits/stdc++.h>
using namespace std;
#define ll long long
 
inline ll read(){
    char ch=getchar();ll s=0,w=1;
    while(ch<48||ch>57)
        if(ch=='-')w=-1;ch=getchar();
    while(ch>=48&&ch<=57)
        s=(s<<1)+(s<<3)+ch-48;ch=getchar();
    return s*w;
}
 
inline void write(ll x){
    if(x<0)putchar('-'),x=-x;
    if(x>9)write(x/10);
    putchar(x%10+'0');
}
 
const ll p=1e9+7;
ll inv[1000005],A[1000005],step[1000005];
int main(){
    ll T;
    T=read();
    inv[1]=1,inv[0]=1,A[0]=1,A[2]=1,step[1]=1;
 
    //A[i]=(i-1)(A[i-1]+A[i-2]) i>=3;
    for(ll i=3;i<=1e6+5;i++)
        A[i]=(i-1)*(A[i-1]+A[i-2])%p;
 
    //求组合数的模
    //注意到组合数中有除法,由于除法的模时候没有意义的,所以这时候就要求逆元
    //所以只需求1到m的乘法逆元,由于是线性的,用线性求逆元的方法
    for(ll i=2;i<=1e6+5;i++)
        inv[i]=inv[p%i]*(p-p/i)%p;
    
    //这里求了inv[i]!的模
    for(ll i=2;i<=1e6+5;i++)
        inv[i]=inv[i]*inv[i-1]%p;
        
    //i!的模
    for(ll i=2;i<=1e6+5;i++)
        step[i]=step[i-1]*i%p;
 
    while(T--){
        ll n,m,c_mod=1;
        n=read(),m=read();
        c_mod=inv[n-m]*inv[m]%p;
        c_mod=c_mod*step[n]%p;
        write(c_mod*A[n-m]%p);putchar('\n');
    }
}


P4942 小凯的数字

首先一个数mod 9的余数等于它各个位上的和mod 9的余数,也就是这题求(l+r)(l-r+1)/2 mod 9(等差数列求和)注意这里由有2,运用逆元,可以将其变为乘5.

#include<bits/stdc++.h>
using namespace std;
#define ll long long

inline ll read(){
    char ch=getchar();ll s=0,w=1;
    while(ch<48||ch>57){
        if(ch=='-')w=-1;ch=getchar();
    }
    while(ch>=48&&ch<=57){
        s=(s<<1)+(s<<3)+ch-48;ch=getchar();
    }
    return s*w;
}

inline void write(ll x){
    if(x<0)putchar('-'),x=-x;
    if(x>9)write(x/10);
    putchar(x%10+'0');
}

int main(){
    ll t;
    t=read();
    while(t--){
        ll l,r,ans;
        l=read(),r=read();
        if(l>r)swap(l,r);
        ans=(l+r)%9*(r-l+1)%9*5%9;
        write(ans);putchar('\n');
    }
}


P2613 【模板】有理数取余

由于19260817是质数,所以不会angry  哈哈哈哈哈哈 

然后求乘法逆元直接上小费马就可以了

#include<bits/stdc++.h>
#define ll long long
using namespace std;
ll ans,a,b,p=19260817;
string s1,s2;
ll qpow(ll x,ll n){
    ll res=1;
    while(n){
        if(n&1)res=res*x%p;
        n>>=1;
        x=x*x%p;
    }
    return res;
}
int main(){
    cin>>s1>>s2;
    for(int i=0;i<s1.size();i++){
        a=a*10+s1[i]-'0';
        a%=p;
    }
    for(int i=0;i<s2.size();i++){
        b=b*10+s2[i]-'0';
        b%=p;
    }
    cout<<a*qpow(b,p-2)%p;
    return 0;
}

P5431 【模板】乘法逆元 2 题解

这道题是真的毒瘤,卡常凡死了;

首先将所求通分 \sum \frac{k^{i}\prod_{j!=i}^{} a_{j}}{\prod a_{i}} ,这样求就只用求一次逆元了

然后预处理a[i]的前缀积后缀积,O(1)时间求出分子中的连乘

代码如下:

#include<bits/stdc++.h>
#define ll long long
using namespace std;
const int N=5*1e6;
ll n,k1=1,p,k,ans,s1[N+10],s2[N+10],a[N+10];
inline ll qpow(ll x,ll n){
    ll res=1;
    while(n){
        if(n&1)res=res*x%p;
        n>>=1;
        x=x*x%p;
    }
    return res;
}

inline int read(){
    char ch=getchar();int s=0,w=1;
    while(ch<48||ch>57)
        if(ch=='-')w=-1;ch=getchar();
    while(ch>=48&&ch<=57)
        s=(s<<1)+(s<<3)+ch-48;ch=getchar();
    return s*w;
}

void inti(){
    n=read(); p=read(); k=read();
    s1[0]=s2[n+1]=1;
    for(int i=1;i<=n;i++) a[i]=read();
    for(int i=1;i<=n;i++) s1[i]=s1[i-1]*a[i]%p;
    for(int i=n;i>=1;i--) s2[i]=s2[i+1]*a[i]%p;
}

int main(){
    inti();
    ll inv=qpow(s1[n],p-2);
    for(int i=1;i<=n;i++){
        k1=k1*k%p;
        ans=ans+s1[i-1]*s2[i+1]%p*k1%p;
        ans%=p;
    }
    cout<<ans*inv%p;
    return 0;
}

  • 2
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值