一个单位球体积理清二三重积分计算与体积的求解方法(含旋转体体积)

way1

圆柱体体积可以看成图中红色长方形沿y轴旋转


way2

将空心柱壳切开后,得到一个长方体,长为2\pi y,宽为dy,(注意这里切开来以后当然不是一个严格的长方体,二是一上让边长为2\pi (y+dy),下边为2\pi y的一个柱体,但是dy较小我们可以忽略不计)


way3

双重积分先对x积分(因为这样2\pi y相当于常数)实际上积分得到的结果就是上述的空心柱壳

当然如果先对y积分那么得到的就是圆盘

注意这里的2\pi ydxdy表示的就是下图的那个空心柱壳


way4

和方法3相似,只不过体积微元是通过小方块沿y轴旋转得到,这里不再赘述


 way5

方法5实际上就是方法4的极坐标表示

体积微元为如图面积绕y轴旋转

那么可以得到一个空心柱壳(不是很严谨,但大概就是轮胎的样子)

将其切开后,底面积为rdrd\theta,高为rcos\theta2\pi(横坐标rcos\theta,这里用了近似)


way7(三重积分)

先1后2(先求1次积分,再求二重)

下面说的方法7,实际上是我把方法6省略了,因为和5没什么区别

7.1可以将二重积分看作\int \int f(x,y)dxdy,根据几何含义可以知道这个积分表示的是上半球的体积(当然这里球的体积应该算是未知的,这里只是想要熟悉一下二重积分的几何定义)

7.2 dx dy的极坐标表示为rdrd\theta(这里有根号,且是球,所以想到极坐标)


way8 

先2后1(先求二重,再求一重积分)

注意下面二重积分实际上就是红色圆的面积也就是\pi (1-z^{2})


way9 

球体积的体积微元为\rho ^{2}sin\varphi


way10

这里将d\rho的二次项,三次想都忽略

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值