分布式事务理论加实战,怒肝三个月啃完这110道面试题

本文详细探讨了分布式事务的相关概念,包括XA协议的问题、柔性事务的各种模式(TCC、SAGA、AT等)以及分布式事务框架如Seata和ShardingSphere的应用。同时,文章提供了110道面试题,帮助读者深入理解分布式事务的理论与实践。
摘要由CSDN通过智能技术生成

答:5.7以前崩溃的那个RM会丢失事务,导致别人都提交了,他被回滚了。5.7之后修复了,重连后还能继续提交。

  1. commit时,某个RM崩溃了怎么办?

答:RM恢复之后重试,要是重试还是失败就要发送告警,人工进行干预。

XA协议存在的问题

  1. 同步阻塞问题

全局事务内部包含了多个独立的事务分支,这一组事务分支,这一组事务分支要不都成功,要不都失败。各个事务分支的ACID特性构成了全局事务的ACID特性。那么mysql的效率也会降低

2. 单点故障

TM是单点的,一旦TM发生故障,参与者RM会一直阻塞下去。尤其再第二阶段,TM发生故障,那么所有的RM都还处于锁定资源的状态中,而无法完成事务操作。成熟的XA框架需要考虑TM的高可用性。

  1. 数据不一致

在提交阶段的时候,TM向RM发送commit请求后,发生了局部网络异常或者在发送commit请求的时候TM故障了,会导致部分RM收到commit请求并执行,而部分RM未收到commit请求则无法进行事务提交,就会造成数据不一致的情况。

支持XA的框架

XA方面的框架,比较推荐Atomikos和narayana

二、柔性事务

如果将实现了ACID的事务要素的事务称为刚性事务的话,那么基于BASE理论的事务则称为柔性事务。

BASE:

  • Basically Available (基本可用)

  • Soft state(柔性状态) 允许系统状态更新有一定的延时

  • Eventually consistent(最终一致性)

柔性事务常见模式

1. TCC

TCC模式将每个服务的业务操作分为两个阶段。第一个阶段检查并预留相关资源(Try),第二个阶段根据Try状态,如果都成功,则进行Comfirm操作,如果任意一个发生错误,则全部Cancel。

  1. Try:完成所有业务检查,预留资源

  2. Confirm:正在执行的业务逻辑,不做业务检查,只是要Try阶段预留的业务资源。因此,只要Try成功,Confirm基本能成功。另外Confirm需要满足幂等性。

  3. Cancel:释放Try阶段的资源。同样Cancel也需要满足幂等性。

TCC不依赖RM对分布式事务的支持,而是通过对业务逻辑的分解来实现分布式事务。对业务有侵入性

TCC需要注意的问题:

  1. 允许空回滚

Cancel的时候要判断Try有没有完成,没完成就不做Cancel

2. 防悬挂控制

如果网络等数据库还没收到Try的执行命令,Cancel命令先收到了。就会导致这个Try命令就没有相对于的Cancel操作了,会一直悬挂在那里。

解决方法:

  • 可以控制Try和Cancel的顺序,让Try在前面

  • 先收到Cancel的时候,记录一下。再收到Try的时候就知道这个操作是要取消的,那Try就没必要执行了。

  1. 幂等设计

commit操作可能会被重试,所以需要幂等性。

2. SAGA

Saga模式没有Try阶段,直接提交事务。复杂情况下,对回滚操作的设计要求较高。

3. AT

AT就是通过自动生成反向SQL的方式进行回滚。

在第一阶段的时候执行业务SQL,并且将SQL造成的影响保留下来。

第二阶段如果发生异常,就会通过保留的影响用反向SQL恢复回去。

缺点:生成反向SQL如果是在特别复杂的情况下,可能会处理不了。

4. 可靠消息最终一致性

  1. 服务A发送一个prepared消息给mq,如果发送失败则取消操作

  2. 消息发送成功则开始执行本地事务

  3. 本地事务执行成功就向mq发送确认消息,执行失败就发送回滚消息

  4. 如果mq没有接收到确认消息,mq会去轮询未确认的prepared消息,然后去查询服务A是否执行成功,然后确定是重试还是回滚

  5. 如果mq成功收到确认消息,那么他会被服务B消费到,并且服务B可以通过ACK机制保证服务B执行成功.

  6. 如果服务B实在是无法执行成功,可以通知服务A回滚,或者发送报警消息让手工补偿.

5. 本地消息表

  1. 服务A执行业务代码,并往自己的消息表插入一条数据

  2. 服务A执行成功后,会向MQ发送一条数据,去调用服务B的方法

  3. 服务B收到后,先往自己的消息表插入一条数据,然后去执行业务代码

  4. 如果服务B业务代码执行成功,那么更新自己的消息表的状态并且通知服务A更新消息表状态

  5. 如果服务B业务代码执行失败,那么服务B不用做什么

  6. 服务A会有一个定时任务定时轮询自己的消息表,将失败的消息再发给MQ,让服务B重新在执行一次(服务B保证接口幂等性)

  7. 通过不断的重试,保证最终一致性

这个方案大量使用来消息表,对于高并发的场景不太友好.

6. 最大努力型通知

类似银行的支付回调,会多次回调直到成功。

这种方案适用于允许有些事务失败的情况,如记录日志等.

三、分布式事务框架

1. Seata

Seata是阿里巴巴和蚂蚁金服联合打造的分布式事务框架。其AT事务的目标是让开发者像使用本地事务一样使用分布式事务。

核心组件:

  • TM 事务管理者:开启提交或回滚全局事务

  • TC 事务协调者:维护全局和分支事务的状态,指示全局提交或回滚。

  • RM 资源管理者:管理执行分支事务上的资源,向TC注册分支事务、上报分支事务状态、控制分支事务的提交或回滚。

Seata管理的分布式事务的典型声明周期:

  • TM要求TC开始一个全新的全局事务。

  • TC生成一个代表该全局事务的XID。XID贯穿整个微服务的调用链。

  • TM要求TC提交或回滚XID对应的全局事务。

  • TC驱动XID对应的全局事务下的所有分支事务完成提交或回滚。

Seata支持 XA、TCC、Saga模式,但支持的主要方式是 AT。

2. ShardingSphere对分布式事务的支持

ShardingSphere 通过整合常用的几个事务开源实现,如Atomkkos、Narayana,为本地事务、两阶段事务和柔性事务提供统一的分布式事务接口,并弥补当前方案的不足,提供一站式的分布式事务解决方案是ShardingSphere的设计目标。

使用实例:https://gitee.com/mmcLine/spring-cloud-transaction
里面readme有详细的项目介绍。

作者:女友在高考
链接:https://www.cnblogs.com/javammc/p/15098694.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值