数据分析之Python 对Dataframe 单条件筛选、多条件筛选、过滤数据

本文详细介绍了PythonPandas库中常用的数据筛选方法,如单一条件筛选、isin函数、query函数、contains函数和loc函数,以及它们在实际数据处理中的应用场景和使用技巧。

一、筛选方法和函数简介
1.简单的筛选方法:
1.1单一的筛选:条件范围可以是数值或字符串
df[df[“column_name”] == value]
多字段的筛选(又称为复合条件的筛选): 多个不同的特征列,并且条件可以对应不同的数值或字符串
df[(df[“column_name1”] <= value) & (df[“column_name2”] == str)]

1.2 isin函数:

df[df[“column_name”].isin(li)] (# li = [20, 25, 27] 或 li = np.arange(20, 30))
根据从isin函数传入的列表(li),筛选出与列表中包含的数值或字符串相同的数据记录, 用法有点类似sql中的"in"

1.3 query函数:

df.query("(column_name1 == ‘str1’) & (column_name2 == ‘str2’)")
根据query中引入的不同字段(str1,str2等)和条件,筛选出同时能满足这些要求的数据记录

1.4 contains函数:

df[df[“column_name”].str.contains(“str”)]
筛选出所有含有(str)的数据记录, 用法类似于sql中的"contains"

1.5 loc函数:

df.loc[df["column_name] <= value]
根据特征属性(列名)或索引标签筛选数据:df.loc[columns 筛选条件] 或df.loc[index 筛选条件];
同时根据索引标签和特征属性(列名)筛选数据:df.loc[index 筛选条件,columns 筛选条件]
              &n

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值