多模态大模型微调参数对比

模型:InternVL2-2B

微调方法:LoRA

参数:矩阵秩 r

测评案例:羊肉抓饭(新疆),肠粉(粤菜),口水鸡(川菜),叉烧肉(粤菜)

r = 8:

可以看出,模型虽然认得菜品,但是这个回答并不准确,比如说口水鸡是四川火锅。

r = 128:

鸡蛋肠粉和羊肉抓饭也认出来了,比r=8好的是口水鸡说的很对,不过最后的叉烧肉还是说错了,我查了一下广东荔枝肉,和图中的叉烧肉还是有不小差别的。

再测试一次,r=128的模型又说对了。而r=8的模型仍然坚持四川火锅。

可见就是 r 越高确实能提高生成的准确性,尤其当用户没有明确问来自哪个菜系时,模型对于生成内容的概率分布会随着r升高而变得更准确(比如r=8的模型会坚持把口水鸡和四川火锅关联在一起,多次生成同一结果说明错误的概率分布占比较大)。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值