
深度学习
文章平均质量分 90
多巴胺与内啡肽.
代码爱好者
展开
-
深度学习--循环神经网络RNN
循环神经网络(RNN)的起源可以追溯到1982年,由Saratha Sathasivam提出的霍普菲尔德网络(Hopfield network)。然而,早期的RNN结构相对简单,且在实际应用中受到了一定的限制。随着深度学习技术的不断发展,RNN模型在结构和性能上得到了显著的改进,成为处理序列数据的强大工具。循环神经网络)是一种用于处理序列数据的神经网络架构。其在处理序列输入时具有记忆性,可以保留之前输入的信息并继续作为后续输入的一部分进行计算。原创 2025-04-25 22:23:29 · 1347 阅读 · 0 评论 -
深度学习--自然语言处理统计语言与神经语言模型
传统的语言模型是基于词袋模型(Bag-of-Words)和one-hot编码展开工作的,即在传统的语言模型中要生成一个句子,其实是拿一堆词语进行拼凑,拼凑出一个句子后我们需要有一个评委来对这个机器生成的句子进行打分和评价,语言模型就是这么一位评委,它会给每个句子打出一个概率值,以表明他们与人类语言的接近程度。原创 2025-04-25 21:06:48 · 1563 阅读 · 0 评论 -
深度学习--ResNet残差神经网络解析
在ResNet之前,VGG、AlexNet等模型通过增加网络深度提升性能,但人们发现:当网络层数超过20层后,模型的训练误差和测试误差反而会不降反升。这一现象被称为“网络退化”(Degradation),并非由过拟合导致,而是因为深层网络难以优化。2015年,微软研究院的何恺明团队提出了ResNet(Residual NeuralNetwork),这一模型以3.57%的Top-5错误率首次在ImageNet图像识别竞赛中超越人类水平,并成为深度学习历史上的里程碑。原创 2025-04-23 22:18:19 · 947 阅读 · 0 评论 -
深度学习--卷积神经网络调整学习率
在深度学习中,学习率(Learning Rate) 是优化算法中最重要的超参数之一。对于卷积神经网络(CNN)而言,合理的学习率调整策略直接影响模型的收敛速度、训练稳定性和最终性能。本文将系统性地介绍CNN训练中常用的学习率调整方法,并结合PyTorch代码示例和实践经验,帮助读者掌握这一关键技巧。常用的学习率有0.1、0.01以及0.001等,学习率越大则权重更新越快。一般来说,我们希望在训练初期学习率大一些,使得网络收敛迅速,在训练后期学习率小一些,使得网络更好的收敛到最优解。使用库函数进行调整。原创 2025-04-23 20:49:32 · 968 阅读 · 0 评论 -
深度学习--卷积神经网络保存最优模型
在深度学习项目中,特别是在使用卷积神经网络(CNN)处理计算机视觉任务时,模型保存策略是影响最终效果的关键因素。保存最优模型指的是在训练过程中,根据某个指标(如验证集准确率或损失函数值)的表现,选择最好的模型参数并将其保存下来,然后形成一个文件,后缀名为pt\ppt\t7在深度学习中,模型的训练过程通常是通过迭代优化算法(如梯度下降)来不断调整模型的参数,以最小化目标函数(如损失函数)。在每个训练周期结束后,会使用验证集或测试集对模型进行评估,计算模型在该指标上的性能。原创 2025-04-22 21:33:23 · 836 阅读 · 0 评论 -
深度学习--卷积神经网络数据增强
*数据增强(Data Augmentation):**缓解深度学习中数据不足的场景,在图像领域首先得到广泛使用,进而延伸到 NLP 领域,并在许多任务上取得效果。一个主要的方向是增加训练数据的多样性,从而提高模型泛化能力。本文将深入探讨数据增强的原理、常用方法及其在CNN中的应用实践。数据增强是CNN训练中简单却高效的“免费午餐”,通过模拟真实世界的数据多样性,显著提升模型的泛化能力。随着AutoML技术的发展,自动化、自适应增强策略正成为新的趋势。原创 2025-04-22 20:47:48 · 1276 阅读 · 3 评论 -
深度学习--mnist数据集实现卷积神经网络的手写数字识别
卷积神经网络是一种深度学习模型,主要应用于图像和视频处理任务。它的设计灵感来源于生物视觉系统的工作原理。def __init__(self):#输入大小(1,28,28)super(CNN,self).__init__()#初始化父类self.conv1 = nn.Sequential(#将多个层组合到一起,创建了一个容器nn.Conv2d(stride=1,padding=1,),nn.ReLU(),原创 2025-04-19 16:37:23 · 682 阅读 · 0 评论 -
深度学习--卷积神经网络CNN原理
对图像(不同的数据窗口数据)和卷积核(一组固定的权重:因为每个神经元的多个权重固定,所以又可以看做一个恒定的滤波器filter)做内积(逐个元素相乘再求和)的操作就是所谓的【卷积】操作,也是卷积神经网络的名字来源。首先,将这个卷积核顺序对应图片的每一个位置,将然后使其进行点乘,将相乘的结果求和得到一个值即为卷积后图片的像素点的像素值,最终内积完得到一个结果叫特征图。原创 2025-04-19 15:56:42 · 1058 阅读 · 0 评论 -
深度学习--深度学习概念、框架以及构造
深度学习是人工智能的一个子领域,属于机器学习的一部分,它基于人工神经网络的概念和结构,通过模拟人脑的工作方式来进行机器学习。原创 2025-04-15 13:08:20 · 862 阅读 · 0 评论