将训练好的YOLOV8模型部署到【Android Studio】

本文详细介绍了如何将自定义训练的YOLOv8模型转换成ONNX和ncnn格式,并在Android Studio项目中进行部署。通过修改yolo.cpp、strings.xml和yolov8ncnn.cpp文件,确保类别数量和模型文件名匹配,最终成功在移动端运行模型并展示效果。
摘要由CSDN通过智能技术生成

一、说在前面 

最近在学习如何将yolov8的项目部署到移动端的安卓手机上面。在这里记录

承接上期文章从零开始部署yolov8到安卓手机详细教程【Android Studio】


二、将自定义的数据训练好的pt文件转为onnx文件

from ultralytics import YOLO
model = YOLO("best.pt")
success = model.export(format="onnx", simplify=True, opset=12)  # 将模型导出为 ONNX 格式

 三、将转换后的onnx文件转为nccn文件

省去编译转换工具的时间开箱即用,一键转换 

### 回答1: 您可以使用Android StudioYOLOv5模型部署Android设备上。首先,您需要将YOLOv5模型转换为TensorFlow Lite格式,然后将其添加到Android Studio项目中。接下来,您可以使用Java或Kotlin编写代码来加载模型并在Android设备上运行YOLOv5目标检测。具体的步骤和代码实现可以参考相关的教程和文档。 ### 回答2: 要将YOLOv5部署Android设备上,可以按照以下步骤进行: 1. 安装Android开发环境:确保已安装Java开发工具包(JDK)和Android Studio。这样可以使用Android Studio进行开发和构建。 2. 创建一个新的Android项目:在Android Studio中创建一个新的项目,并选择合适的项目名称和存储位置。 3. 添加YOLOv5模型:将YOLOv5的模型文件(如.weights或.pt文件)添加到Android项目的"assets"文件夹中。 4. 配置项目依赖项:在项目的build.gradle文件中,通过添加相应的依赖项,引入OpenCV和PyTorch库。 5. 配置JNI接口:创建一个JNI(Java Native Interface)接口文件,将其与YOLOv5模型集成。JNI接口可以通过调用本地C/C++代码来连接Java代码和模型。 6. 编写Java代码:编写适当的Java代码以加载YOLOv5模型并进行目标检测。这包括从相机捕获图像,调用JNI接口加载模型并获取检测结果。 7. 构建和打包项目:使用Android Studio进行构建,以生成一个或多个APK文件。确保配置AndroidManifest.xml文件以获取所需的权限和功能。 8. 安装和运行应用程序:将生成的APK文件发送到Android设备,并安装和运行应用程序。确保设备具有足够的性能和存储空间来运行YOLOv5模型。 通过以上步骤,您就可以将YOLOv5成功部署Android设备上,并使用相机进行实时目标检测。请注意,这个过程可能需要一些开发经验,并且可能需要在不同的环境中进行一些调整和修改,以适应您的具体需求和设备。 ### 回答3: 要将YOLOv5部署Android设备上,可以按照以下步骤进行操作: 首先,需要将YOLOv5模型转换为适用于Android设备的格式。可以使用ONNX或TFLite等工具将模型从PyTorch转换为可在Android上运行的格式。 接下来,创建一个Android项目,并将转换后的模型文件添加到项目中。 在Android项目中,需要使用相关的深度学习推理库,如TensorFlow Lite或NCNN。这些库支持在Android设备上运行深度学习模型。可以根据自己的需求选择合适的库,并将其集成到Android项目中。 然后,在Android项目中编写代码,加载转换后的模型,并使用深度学习推理库进行目标检测。可以使用相机API或视频流作为输入,对每一帧进行目标检测,并将检测结果显示在屏幕上。 为了提高目标检测的性能,可以使用一些优化技术。例如,可以使用图像预处理技术对输入图像进行调整和裁剪,以提高模型的准确性和速度。此外,还可以使用硬件加速技术,如GPU或NEON指令集,来加速推理过程。 最后,将整个Android项目构建为一个APK文件,并安装到Android设备上进行测试。可以在实际场景中测试模型的性能和准确性,并根据需要进行调整和优化。 总的来说,将YOLOv5部署Android设备上需要进行模型转换、库集成、代码编写和优化等步骤。这些步骤确保了将YOLOv5成功部署Android设备上,并实现在移动设备上进行实时目标检测的功能。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

仰空的盲者

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值