数据结构(5.2_2)——二叉树的性质

常见考点1:

设非空二叉树中度为0、1和2的结点个数分别为n0、n1和n2,则n0=n2+1(叶子结点比二分支结点多一个)

常见考点2:

二叉树第一层至多右 有2^{i}-1个结点(i>=1)

m叉树第一层至多右 有m^{i}-1个结点(i>=1)

常见考点3: 

高度为h的二叉树至多有2^{h}-1个结点(满二叉树)

高度为h的m叉树至多有\frac{m^{h}-1}{m-1}个结点

等比数列求和公式:a+aq+aq^2...+aq^n-1=\frac{a(1-q^{n})}{1-q}

 

完全二叉树的常考性质 

常见考点1: 

具有n个(n>0)结点的完全二叉树的高度h为[\log_{2}(n+1)][\log_{2}(n)]+1

log_{2}(n+1)推导过程:

高度为h的满二叉数共有2^{h}-1个结点

高度为h-1的满二叉数共有2^{h-1}-1个结点

所以n个(n>0)结点的完全二叉树:

高度为h-1的满二叉数<n个(n>0)结点的完全二叉树<=高度为h的满二叉数

2^{h-1}-1<n\leq 2^{h}-1

2^{h-1}<n\leq 2^{h}

h-1<\log_{2}n+1\leq h

h=log_{2}(n+1)

[]log_{2}(n)]+1推导过程:

高度为h-1的满二叉数共有2^{h-1}-1个结点

高度为h的完全二叉数至少2^{h-1}个结点,至多2^{h}-1个结点

得出 

 2^{h-1}-1\leq n< 2^{h}

h-1\leq log_{2}n<h

h=log_{2}(n)+1

根据以上两种方法得出:第i个结点所在层次为[\log_{2}(n+1)][\log_{2}(n)]+1

 

 常见考点2:

对于完全二叉树,可以由结点数n推出度为0、1和2的结点个数为n0、n1和n2

  1. 完全二叉树最多只有一个度为1的结点——>n1=0或1
  2.  n0=n2+1——>n0+n2一定是奇数

由1和2可得出:

  1. 若完全二叉树有2k个(偶数)个结点,则必有n1=1,n0=k,n2=k-1
  2. 若完全二叉树有2k-1个(奇数)个结点,则必有n1=0,n0=k,n2=k-1

总结

  • 3
    点赞
  • 4
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值