拉格朗日乘子法

用于求解有约束条件的优化问题,通过引入拉格朗日乘子将原问题转化成无约束优化问题。

一. 等式约束

问题:

在约束条件

\left\{\begin{matrix} g_1(\vec{x})=0\\ g_2(\vec{x})=0\\ ...\\ g_k(\vec{x})=0\\ \end{matrix}\right.

下求目标函数

f(\vec{x})

的最小值。

解法:

取拉格朗日函数

L(\vec{x},\lambda_1,...,\lambda_k)=f(\vec{x})+\sum\limits_{i=1}^{k}\lambda_ig_i(\vec{x}),

\left\{\begin{matrix} \bigtriangledown_{\vec{x}}L(\vec{x},\lambda_1,...,\lambda_k)=\vec{0},\;\;\;\\ g_i(\vec{x})=0,\; i=1,2,...,k.\\ \end{matrix}\right.

即可得到目标函数最小值点。

二. 不等式约束

问题:

在约束条件

\left\{\begin{matrix} \;g_i(\vec{x})=0,\; i=1,2,...,k,\\ h_j(\vec{x})\leq 0,\; j=1,2,...,l.\\ \end{matrix}\right.

下求目标函数

f(\vec{x})

的最小值。

解法:

取拉格朗日函数

L(\vec{x},\lambda_1,...,\lambda_k,\mu_1,...,\mu_l)=f(\vec{x})+\sum\limits_{i=1}^{k}\lambda_ig_i(\vec{x})+\sum\limits_{j=1}^{l}\mu_jh_j(\vec{x}),

\left\{\begin{matrix} \bigtriangledown_{\vec{x}}L(\vec{x},\lambda_1,...,\lambda_k,\mu_1,...,\mu_l)=\vec{0},\;\;\;\\ g_i(\vec{x})=0,\; i=1,2,...,k, \quad \quad\quad\quad\\ h_j(\vec{x})\leq 0,\; j=1,2,...,l, \quad \quad\quad\quad\\ \mu_j\geq 0, j=1,2,...,l, \quad \quad\quad\quad \quad\;\;\;\\ \mu_jh_j(\vec{x})=0,j=1,2,...,l. \quad \quad\;\;\;\;\; \end{matrix}\right.

即可得到目标函数最小值点。

  • 2
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值