机器学习 - 关联分析 Association Analysis(学习笔记)

本文介绍了关联分析在餐饮、搜索引擎推荐和新闻趋势分析中的应用。关联规则如{a} -> {b},支持度、置信度和提升度是关键指标。Apriori算法通过连接和剪枝找到频繁项集,而FP-Growth算法避免生成候选集,仅需扫描数据集两次,构建FP树来挖掘频繁项集。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

应用举例:餐饮企业菜品搭配; 搜索引擎内容的推荐;新闻流行趋势的分析。

TID ITEMS
001 Cola, Egg, Ham
002 Cola, Diaper, Beer
003 Cola, Diaper, Beer, Ham
004 Diaper, Beer

事务:一条数据;                项:Egg 一项;                项集 {Egg, Ham}  2-项集

关联规则(association rule): {a} -> {b}。{a}叫做前件,{b}叫做后件。

支持度计数:商品总和出现的次数。{Diaper, Beer}出现在事务 002、003和004中,所以它的支持度计数是3

支持度(support):支持度计数/总的事务数。{Diaper, Beer}的支持度计数为3,所以它的支持度是3/4=75%,说明有75%的人同时买了Diaper和Beer。主要作用是删去无意义的规则。

置信度(confidence):对于规则{Diaper}→{Beer},{Diaper, Beer}的支持度计数/{Diaper}的支持度计数,为这个规则的置信度。例如规则{Diaper}→{Beer}的置信度为3÷3=100%。说明买了Diaper的人100%也买了Beer。置信度衡量推出的规则的可靠性。

提升度:商品A的出现对商品B的出现概率提升的程度。

提升度(A->B) = 置信度(A->B)/支持度(B)   

提升度(A->B) > 1:代表有提升

提升度(A->B) = 1:代表没有提升也没有下降

提升度(A->B) < 1:代表有下降

频繁项集

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值