一、整数
存:
我们都知道计算机里面的所有数据都是用二进制来存储的,整数的二进制有三种表示的方式,分别是原码,反码和补码。原码,反码和补码一般都是32个比特位,第一位是符号位。其中有符号整数的符号位为 0,无符号整数的符号位 1.
正数的原码,反码和补码是相同的,负整数的三种表示方法各不相同。
原码:直接将整数按照正负数的形式转换为二进制得到的就是原码。
反码:将原码的符号位不变,其他位取反,取反也就是把 0 变为 1,1 变为 0。
补码:将反码 + 1就是补码。
取:
从内存里面取出整数类型,就是把补码取反加 1 变回原码。
二、浮点数
存:
根据国际标准IEEE(电气和电子工程协会)754,任意一个二进制浮点数 V 可以表示成下面的形式:
举例来说:
十进制的 5.0,写成二进制是 101.0,相当于 1.01 x 2^2 。
综上所述可以得出,S = 0, M = 1.01,E = 2。
IEEE 754 规定:
对于32位的浮点数(float),最高位的 1 位存储符号位 S ,接着 8 位存储指数 E ,剩下的 23 位存储有效数字 M 。
对于64位的浮点数(double),最高位的 1 位存储符号位 S ,接着 11 位存储指数 E ,剩下的 52 位存储有效数字 M 。
在计算机内部保存 M 时,默认这个数的第一位总是 1 ,因此可以被舍去,只保存后面的小数部分。比如保存 1.01 的时候,只保存 01,等到读取的时候,再把第一位的 1 加上去。这样做的目的,是节省有效数字。以 32 位浮点数为例,留给 M 的只有 23 位,将第一位舍去之后,等于可以保存 24 位有效数字。
对于指数 E 还有特殊的规定:
首先,E 作为一个无符号整数(unsigned int)
这意味着,如果 E 为 8 位的话,它的取值范围为 0~255。如果 E 为 11 位的话,它的取值范围为 0~2047。但是,科学计数法中的 E 可以是负数的,所以 IEEE 754 规定,存入内存时 E 的真实值必须再加上一个中间数,对于 8 位的 E,这个中间数是 127。对于 11 位的 E,中间数是 1023。比如,2^10 的 E 是 10,所以保存成 32 位浮点数时,必须保存成 10 + 127 = 137,即 10001001。
取:
取出指数 E 分为三种情况:
1. E 不为全 0 或不为全 1
即指数 E 的计算值减去 127(或1023),得到真实值,再将有效数字 M 前加上第一位的 1。
比如,0.5 的二进制形式为 0.1,由于规定正数部分必须为 1,即将小数点右移 1 位,则为
1.0 * 2^(-1) ,其阶码为 -1 + 127 = 126,表示为 01111110,而尾数 1.0 去掉整数部分为 0,补齐到 23 位。
2. E 为全 0
这时,浮点数的指数 E 等于 1 - 127 (或1 - 1023)即为真实值,有效数字 M 不再加上第一位的 1,而是还原为 0.xxxx的小数。
3. E 为全 1
这时,如果有效数字 M 全为 0,表示±无穷大(正负取决于符号位 S )。