数学建模——数据特征分析

一、分布分析

        对于定量数据,欲了解分布形式,是对称还是非对称,可做出频率分布表、绘制频率分布直方图,绘制茎叶图进行直观的分析

        对于定性变量,常根据变量的分类类型进行分组,可以采用饼图和条形图来描述定性变量的分布。

二、对比分析

        把两个相互联系的指标数据进行比较,从数量上展示和说明研究对象规模的大小、水平的高低、速度的快慢等。特别使用于指标间的横纵向比较,时间序列的比较分析。

方法:

        绝对数比较

        相对数比较

三、统计量分析

        集中趋势:均值、中位数、众数

        离中趋势度量:极差、标准差、变异系数(获奖论文用过)

四、周期性分析

五、贡献度分析(帕累托分析)

        二八定律

六、相关性分析

方法:

(一)绘制散点图

(二)绘制散点图矩阵

(三)计算相关系数

注:Pearson和Speraman均需要进行假设检验,使用t检验检验其显著性水平。在正态分布假定下,两种方法在相率上等价,对于连续测量数据,更适合用Pearson

1.Pearson相关系数

分析两个连续性变量之间的关系

                                            r = \frac{\sum_{i=1}^{n}(x_{i}-\bar{x})(y_{i}-\bar{y})}{\sqrt{\sum_{i=1}^{n}(x_{i}-\bar{x})^{2}(y_{i}-\bar{y})^{2}} }

其中统计量t服从自由度(n-2)的分布:

                ​​​​​​​        ​​​​​​​        ​​​​​​​        ​​​​​​​        ​​​​​​​        ​​​​​​​t = \frac{r}{\sqrt{1-\frac{r^{2}}{n-2}}}

2.Speraman秩相关系数

描述分类或等级变量之间、分类或等级变量与连续变量之间的关系。

                                                r_{s} = 1-\frac{6\sum_{i=1}^{n}(R_{i} - Q_{i})^{2}}{n(n^{2}-1)}

变量:

        ·分类变量:定性变量/属性变量,例如:性别(男、女);婚姻状态(已婚、未婚)等

        ·等级变量:顺序变脸,例如:教育水平(小学、初中、高中、大学);满意度(非常不满意、不满意、一般、满意、非常满意)等。

        ·连续变量:数值型变量。取值任意,可进行数值上的计算和比较

3.Kendall’s tau-b相关性分析:用于分析有序定类变量相关性

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值