一、分布分析
对于定量数据,欲了解分布形式,是对称还是非对称,可做出频率分布表、绘制频率分布直方图,绘制茎叶图进行直观的分析
对于定性变量,常根据变量的分类类型进行分组,可以采用饼图和条形图来描述定性变量的分布。
二、对比分析
把两个相互联系的指标数据进行比较,从数量上展示和说明研究对象规模的大小、水平的高低、速度的快慢等。特别使用于指标间的横纵向比较,时间序列的比较分析。
方法:
绝对数比较
相对数比较
三、统计量分析
集中趋势:均值、中位数、众数
离中趋势度量:极差、标准差、变异系数(获奖论文用过)
四、周期性分析
五、贡献度分析(帕累托分析)
二八定律
六、相关性分析
方法:
(一)绘制散点图
(二)绘制散点图矩阵
(三)计算相关系数
注:Pearson和Speraman均需要进行假设检验,使用t检验检验其显著性水平。在正态分布假定下,两种方法在相率上等价,对于连续测量数据,更适合用Pearson
1.Pearson相关系数
分析两个连续性变量之间的关系
其中统计量t服从自由度(n-2)的分布:
2.Speraman秩相关系数
描述分类或等级变量之间、分类或等级变量与连续变量之间的关系。
变量:
·分类变量:定性变量/属性变量,例如:性别(男、女);婚姻状态(已婚、未婚)等
·等级变量:顺序变脸,例如:教育水平(小学、初中、高中、大学);满意度(非常不满意、不满意、一般、满意、非常满意)等。
·连续变量:数值型变量。取值任意,可进行数值上的计算和比较