生活中的算法:从手机省电到餐厅点餐,算法如何优化我们的世界?

#新星杯·14天创作挑战营·第11期#

博客引言:

在科技飞速发展的今天,算法已经渗透到我们生活的方方面面,从智能手机的电池管理到医院的患者排队系统,都在默默优化我们的生活体验。你是否好奇,为什么手机在低电量时会自动限制后台进程?为什么医院的急诊患者总能优先就诊?这些问题背后,都隐藏着算法的智慧。

今天,我们将通过两个生活场景,深入探讨算法如何帮助我们解决问题,优化体验。


博客正文:

一、智能手机电池省电模式

问题描述:
智能手机的电池容量通常为4000mAh,但不同APP的功耗差异很大。例如,游戏类APP每小时可能消耗100mAh,而社交媒体类APP每小时消耗50mAh。当电量低于20%时,系统会自动启动省电模式,限制后台进程。

目标: 在保证基本功能的前提下,设计一个算法,最大化电池续航时间。

涉及算法: 动态规划

思考过程:
动态规划是一种通过将复杂问题分解为更简单子问题来求解的方法。对于智能手机电池管理,我们需要根据APP的功耗和优先级,优化后台进程的运行,从而延长电池使用时间。

具体来说,我们可以将电池续航问题分解为多个时间段的功耗管理问题。例如,假设当前电量为20%,剩余电量为800mAh。我们需要在有限的电量内,优先关闭功耗高的后台进程,同时保证用户的基本使用需求。

举个例子:
假设手机当前运行的APP包括:

  • 游戏APP(功耗100mAh/小时)
  • 社交媒体APP(功耗50mAh/小时)
  • 邮箱APP(功耗30mAh/小时)

当电量低于20%时,系统需要根据APP的功耗和优先级,决定关闭哪些后台进程。

验证示例:
假设当前电量为20%,剩余电量为800mAh。如果用户希望使用手机通话和听音乐(低功耗功能),如何优化后台进程,使手机续航时间最长?请在评论区分享你的答案!

#include <stdio.h>   // 标准输入输出库,用于printf, scanf等函数
#include <stdlib.h>  // 标准库,用于malloc, free等内存管理函数
#include <string.h>  // 字符串处理库,用于memset等函数

#define MAX_APPS 10   // 定义最大应用数量为10
#define BATTERY_CAPACITY 800  // 电池容量的20%,即800mAh

/* 应用结构体定义 */
typedef struct {
    char name[50];      // 应用名称,最多50个字符
    int power;          // 每小时功耗,单位mAh
    int keep_active;    // 是否必须保留,1表示是,0表示否
} App;

/* 动态规划求解最优关闭方案 */
void optimize_battery(App apps[], int n, double* max_hours) {
    // 分离必须保留和可选应用
    int essential_power = 0;  // 必须保留应用的总功耗
    int optional[MAX_APPS], opt_count = 0;  // 可选应用的功耗数组及其数量

    for (int i = 0; i < n; i++) {
        if (apps[i].keep_active) {
            essential_power += apps[i].power;  // 累加必须保留应用的功耗
        } else {
            optional[opt_count++] = apps[i].power;  // 将可选应用的功耗存入数组
        }
    }

    // 背包问题变体:选择要关闭的APP以最小化总功耗
    int total_power = essential_power;  // 初始总功耗为必须保留应用的总功耗
    int max_reducible = 0;  // 最大可减少的功耗
    for (int i = 0; i < opt_count; i++)
        max_reducible += optional[i];  // 计算所有可选应用的总功耗

    // DP数组初始化
    int* dp = (int*)malloc((max_reducible + 1) * sizeof(int));  // 分配动态规划数组
    memset(dp, 0, (max_reducible + 1) * sizeof(int));  // 初始化数组为0
    dp[0] = 1;  // 基本情况:0功耗可实现

    // 动态规划填表
    int max_reduce = 0;  // 记录最大可减少的功耗
    for (int i = 0; i < opt_count; i++) {
        for (int j = max_reducible; j >= optional[i]; j--) {
            if (dp[j - optional[i]] && !dp[j]) {  // 如果当前功耗j - optional[i]可行,且j不可行
                dp[j] = 1;  // 标记j为可行
                if (j > max_reduce) max_reduce = j;  // 更新最大可减少功耗
            }
        }
    }

    // 计算最终功耗和续航时间
    total_power += (max_reducible - max_reduce);  // 减去最大可减少的功耗
    *max_hours = (double)BATTERY_CAPACITY / total_power;  // 计算最大续航时间

    free(dp);  // 释放动态内存
}

/* 测试用例 */
int main() {
    // 初始化APP列表(示例数据)
    App apps[] = {
        {"Game", 100, 0},  // 游戏应用,功耗100mAh/小时,可关闭
        {"Social Media", 50, 0},  // 社交媒体应用,功耗50mAh/小时,可关闭
        {"Email Client", 30, 1}  // 邮箱客户端,功耗30mAh/小时,必须保留
    };
    int app_count = sizeof(apps) / sizeof(App);  // 计算应用数量

    double max_hours;
    optimize_battery(apps, app_count, &max_hours);  // 调用优化函数

    // 输出结果
    printf("Battery Optimization Result:\n");  // 输出结果标题
    printf("Maximum Usage Time: %.1f hours\n", max_hours);  // 输出最大续航时间

    return 0;
}

输出结果:


二、餐厅订单分配系统

问题描述
餐厅在高峰期需要高效分配订单到不同的厨师,以减少订单处理时间。设计一个算法,优化订单分配,确保所有订单按时完成。

涉及算法:贪心算法
分析
贪心算法是一种通过逐步选择当前最优的选项,最终得到整体最优解的算法。在餐厅订单分配中,贪心算法的核心思想是根据订单的复杂度和厨师的空闲时间,逐步分配订单,确保整体效率。

举例
假设餐厅有3位厨师,分别擅长不同类型的菜品:

  • 厨师A擅长西餐,处理时间15分钟/份。
  • 厨师B擅长中餐,处理时间20分钟/份。
  • 厨师C擅长快餐,处理时间10分钟/份。

当餐厅同时收到多份订单时,如何将订单分配给厨师,使得所有订单的总处理时间最短?

贪心算法的核心思想

  1. 根据订单的复杂度和厨师的擅长领域,优先分配最复杂的订单给最擅长的厨师。
  2. 在每一步选择中,都选择当前最优的分配方式,逐步完成所有订单的分配。

 

// 包含标准输入输出库
#include <stdio.h>
// 包含标准内存管理库
#include <stdlib.h>

// 定义订单类型枚举
typedef enum {
    WESTERN,    // 西餐类型
    CHINESE,    // 中餐类型
    FASTFOOD    // 快餐类型
} CuisineType;

// 定义厨师结构体
typedef struct {
    int id;              // 厨师ID
    CuisineType type;    // 厨师擅长的菜系类型
    int processing_time; // 处理每份订单所需的时间(分钟)
    int available_time;  // 厨师当前的空闲时间(分钟)
} Chef;

// 定义订单结构体
typedef struct {
    int id;          // 订单ID
    CuisineType type; // 订单的菜系类型
    int time;        // 订单的处理时间(分钟)
} Order;

// 比较函数,用于按处理时间升序排序订单
int compare_orders(const void *a, const void *b) {
    Order *order1 = (Order *)a; // 将指针a转换为Order指针
    Order *order2 = (Order *)b; // 将指针b转换为Order指针
    return order1->time - order2->time; // 按处理时间升序排序
}

// 分配订单给厨师的函数
void assign_order(Order order, Chef *chefs, int num_chefs) {
    int min_available_time = -1; // 初始化最小空闲时间为-1
    int selected_chef = -1;      // 初始化选择的厨师索引为-1

    // 遍历所有厨师,找到擅长该类型订单且空闲时间最早的厨师
    for (int i = 0; i < num_chefs; ++i) {
        if (chefs[i].type == order.type) { // 如果当前厨师擅长该订单类型
            if (min_available_time == -1 || chefs[i].available_time < min_available_time) {
                // 更新最小空闲时间和选择的厨师索引
                min_available_time = chefs[i].available_time;
                selected_chef = i;
            }
        }
    }

    // 如果找到合适的厨师
    if (selected_chef != -1) {
        // 计算厨师的新空闲时间
        chefs[selected_chef].available_time = order.time +
            (chefs[selected_chef].available_time > order.time ?
             chefs[selected_chef].available_time : order.time);
        // 输出分配结果
        printf("Order %d (%s) is assigned to chef %d with a completion time of %d minutes\n",
               order.id,
               (order.type == WESTERN ? "Western food" :
                order.type == CHINESE ? "Chinese" : "fast food"),
               chefs[selected_chef].id,
               chefs[selected_chef].available_time);
    } else {
        // 如果没有找到合适的厨师
        printf("Order %d cannot be assigned because there is no chef who is good at the cuisine\n", order.id);
    }
}

// 主函数
int main() {
    // 初始化厨师列表
    Chef chefs[] = {
        {1, WESTERN, 15, 0}, // 厨师1:擅长西餐,处理时间为15分钟,初始空闲时间为0
        {2, CHINESE, 20, 0}, // 厨师2:擅长中餐,处理时间为20分钟,初始空闲时间为0
        {3, FASTFOOD, 10, 0} // 厨师3:擅长快餐,处理时间为10分钟,初始空闲时间为0
    };
    int num_chefs = sizeof(chefs) / sizeof(Chef); // 计算厨师数量

    // 初始化订单列表
    Order orders[] = {
        {1, WESTERN, 15},  // 订单1:西餐,处理时间15分钟
        {2, CHINESE, 20},  // 订单2:中餐,处理时间20分钟
        {3, FASTFOOD, 10}, // 订单3:快餐,处理时间10分钟
        {4, WESTERN, 15},  // 订单4:西餐,处理时间15分钟
        {5, CHINESE, 20},  // 订单5:中餐,处理时间20分钟
        {6, FASTFOOD, 10}, // 订单6:快餐,处理时间10分钟
        {7, WESTERN, 15},  // 订单7:西餐,处理时间15分钟
        {8, CHINESE, 20},  // 订单8:中餐,处理时间20分钟
        {9, FASTFOOD, 10}, // 订单9:快餐,处理时间10分钟
        {10, WESTERN, 15}  // 订单10:西餐,处理时间15分钟
    };
    int num_orders = sizeof(orders) / sizeof(Order); // 计算订单数量

    // 按处理时间升序排序订单
    qsort(orders, num_orders, sizeof(Order), compare_orders);

    // 分配每个订单
    for (int i = 0; i < num_orders; ++i) {
        assign_order(orders[i], chefs, num_chefs);
    }

    // 输出所有厨师的总处理时间
    printf("\nTotal processing time for all chefs:\n");
    for (int i = 0; i < num_chefs; ++i) {
        printf("Chef %d Total Processing Time: %d minutes\n",
               chefs[i].id, chefs[i].available_time);
    }

    return 0;
}

输出结果;

 


三、两种算法的对比分析
算法类型动态规划贪心算法
核心思想分解为子问题,逐步构建最优解逐步选择当前最优的选项,得到整体最优解
适用场景适用于多阶段决策问题,需要考虑全局最优适用于局部最优能够引导全局最优的问题
复杂度通常时间复杂度较高时间复杂度较低,适用于实时决策
例子智能手机电池管理餐厅订单分配

总结
动态规划和贪心算法是两种经典的算法思想,分别适用于不同的场景。动态规划更适用于需要全局最优的复杂问题,而贪心算法则更适用于能够通过局部最优引导全局最优的问题。


博客结语:

算法不仅仅是代码中的抽象概念,它们在我们的生活中发挥着重要作用。无论是智能手机的电池管理,还是餐厅的订单分配,算法都在默默地优化我们的体验。
通过今天的分享,希望大家能够感受到算法的魅力,并在日常生活中发现更多算法的应用场景!

感谢你的耐心阅读!如果你觉得这篇博客有趣又有用,请点赞分享,让更多人发现算法的魅力!

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

司铭鸿

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值