机器学习实战——K-均值聚类算法:原理与应用

  ✨个人主页欢迎您的访问 ✨期待您的三连 ✨

 ✨个人主页欢迎您的访问 ✨期待您的三连 ✨

  ✨个人主页欢迎您的访问 ✨期待您的三连✨

  ​​​​​​

​​​​​​​​​​​​

​​​​​

1. K-均值聚类算法的原理解释 ✨ ✨

1.1 算法概述

K-均值(K-Means)聚类算法是一种常用的无监督学习算法,用于将数据集划分为K个簇(Cluster),使得每个簇内的样本尽可能相似,而不同簇之间的样本尽可能不同。算法的目标是通过最小化样本与簇中心之间的距离来实现这一划分。

1.2 算法流程

K-均值聚类的基本思想是通过以下步骤进行迭代优化,直到聚类结果稳定。

  1. 初始化:选择K个聚类中心(可以随机选择K个数据点,或者通过某些启发式方法初始化)。
  2. 分配步骤:根据当前聚类中心,将每个数据点分配给距离最近的聚类中心。
  3. 更新步骤:重新计算每个簇的聚类中心,通常是簇中所有点的均值。
  4. 重复步骤:不断重复步骤2和3,直到聚类中心不再发生变化或达到预设的迭代次数。

1.3 数学公式

假设数据集包含 n 个样本点,每个样本是 d-维向量 \mathbf{x_i}=(x_{i1},x_{i2},...,x_{id}),K-均值算法的目标是通过调整K个聚类中心(每个聚类中心为一个

评论 7
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

喵了个AI

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值