✨个人主页欢迎您的访问 ✨期待您的三连 ✨
✨个人主页欢迎您的访问 ✨期待您的三连 ✨
✨个人主页欢迎您的访问 ✨期待您的三连✨
1. K-均值聚类算法的原理解释 ✨ ✨
1.1 算法概述
K-均值(K-Means)聚类算法是一种常用的无监督学习算法,用于将数据集划分为K个簇(Cluster),使得每个簇内的样本尽可能相似,而不同簇之间的样本尽可能不同。算法的目标是通过最小化样本与簇中心之间的距离来实现这一划分。
1.2 算法流程
K-均值聚类的基本思想是通过以下步骤进行迭代优化,直到聚类结果稳定。
- 初始化:选择K个聚类中心(可以随机选择K个数据点,或者通过某些启发式方法初始化)。
- 分配步骤:根据当前聚类中心,将每个数据点分配给距离最近的聚类中心。
- 更新步骤:重新计算每个簇的聚类中心,通常是簇中所有点的均值。
- 重复步骤:不断重复步骤2和3,直到聚类中心不再发生变化或达到预设的迭代次数。
1.3 数学公式
假设数据集包含 个样本点,每个样本是
-维向量
,K-均值算法的目标是通过调整K个聚类中心(每个聚类中心为一个