(Anaconda+PyTorch+PyCharm)基于CPU的PyTorch深度学习环境配置-Anaconda安装,PyTorch安装,PyCharm教程

1、Anacond的介绍

Anaconda指的是一个开源的Python发行版本,其包含了conda、Python等180多个科学包及其依赖项。 因为包含了大量的科学包,Anaconda 的下载文件比较大(约 531 MB),如果只需要某些包,或者需要节省带宽或存储空间,也可以使用Miniconda这个较小的发行版(仅包含conda和 Python)。

Conda是一个开源的包、环境管理器,可以用于在同一个机器上安装不同版本的软件包及其依赖,并能够在不同的环境之间切换

Anaconda包括Conda、Python以及一大堆安装好的工具包,比如:numpy、pandas等

Miniconda包括Conda、Python

2、Anacond下载

官方下载地址:https://www.anaconda.com/download/

建议用我的:

这是安装的视频教程:Anacond安装+PyCharm的安装配置教程
在这里插入图片描述

理由:2023版本的支持python 3.11 ,2020版本的支持python 3.8,如果是需要我文章的代码的,相同环境好运行

3、Anaconda 是跨平台的

一、Anaconda的安装

1.1双击运行→下一步

1.2 同意协议

1.3 安装方式选择

4.4 选择安装路径

4.5 选择安装的版本和添加环境变量

4.6 下一步

4.7下一步

4.8 安装完成

4.9 安装成功后会在你电脑的开始菜单列表中出现

4.9.1 点击上图的点击上图的Anaconda Navigator进入如下界面

点击Environment,右侧出现base的虚拟环境

4.9.2 在开始菜单打开anaconda Prompt

输入:conda env list

查看虚拟环境

4.9.3 创建虚拟环境名称

创建虚拟环境:conda create -n 虚拟环境名字 python=python版本号

输入:conda create -n py38 python=3.8

4.9.4 激活虚拟环境

输入:conda activate py38

4.9.5 查看虚拟环境目录

4.10 查看刚在安装的 时候是否自动配置了环境配置

4.10.1 我的电脑→属性

4.10.2 高级系统设置

4.10.3 点击环境变量

4.10.4 编辑查看path

如果只有以上列表勾选的几个,则还需还要配置以下几个

D:\mysoft\anaconda3
D:\mysoft\anaconda3\Library\mingw-w64\bin
D:\mysoft\anaconda3\Library\usr\bin
D:\mysoft\anaconda3\Library\bin
D:\mysoft\anaconda3\Scripts
D:\mysoft\anaconda3\envs\py38
D:\mysoft\anaconda3\pkgs\python-3.8.17-h1aa4202_0

二、安装PyTorch

https://pytorch.org/

1. 点击上述网址进入PyTorch官网

基于cpu的pytorch安装代码代码如下:

conda install pytorch torchvision torchaudio cpuonly -c pytorch

2、安装 pytorch

进入虚拟环境:conda activate p38

安装pytorch:conda install pytorch torchvision torchaudio cpuonly -c pytorch

3、查看是否安装成功

输入:conda list

查看是否有pytroch 的资源库

注意:退出以上编辑用exit()

退出虚拟环境好用:conda deactivate

三、PyCharm的安装

PyCharm: the Python IDE for Professional Developers by JetBrains

如你需要安装Pycharm的专业版的话,集火码请看文末拿,视频教程在这里:2024最新Pycharm专业版安装教程

2、双击exe文件

3.下一步

4、修改安装路径

5.选择文件使用

6、安装

5、开始菜单运行pycharm

点击ok

6、新建工程

  1. Location可以自己设置,解释器选择Previously configured interpreter,点击add interpreter

7.1 出现以上问题,如下操作

(1)按照目录以下路径,贴出来,

D:\mysoft\anaconda3;
D:\mysoft\anaconda3\Library\mingw-w64\bin;
D:\mysoft\anaconda3\Library\bin;
D:\mysoft\anaconda3\Scripts;
D:\mysoft\anaconda3\envs\py38;
D:\mysoft\anaconda3\pkgs\python-3.8.17-h1aa4202_0;

(2) 配置环境变量

一路确定

重新构建项目

anaconda+Pycharm的安装包+集火码在下面带走:

在这里插入图片描述

如有侵权,请联系删除。

### 回答1: AI笔记是一种记录人工智能算法和流程的工具,可以帮助人们更好地理解和回忆模型。Anaconda是一个基于Python的开源数据科学平台,为数据分析、科学计算和机器学习提供了丰富的库和工具。PyTorch是一个开源机器学习框架,可以轻松构建和训练深度神经网络。PyCharm是一种Python集成开发环境(IDE),包含调试器、代码编辑器和版本控制集成,可以实现Python程序开发的自动化和高效性。 在实际应用中,这些工具可以一起使用。例如,可以使用PyCharm编写PyTorch模型,利用Anaconda环境和库进行模型训练,并将实现的网络结构和学习模型记录在AI笔记中以备后续查看和修改。总之,这些工具在人工智能领域的应用中发挥着至关重要的作用,使人们能够更加高效地实现各种算法和模型,开发精准的智能应用。 ### 回答2: AI笔记、AnacondaPyTorchPyCharm都是与人工智能开发相关的工具。AI笔记是一种可以记录和分享人工智能项目和经验的笔记本程序,大大方便了人工智能开发的过程。Anaconda是一个跨平台的Python数据科学和机器学习集成环境,它拥有庞大的Python库和数据科学工具,包括人工智能框架,如PyTorchPyTorch是一个用于开发深度学习模型的Python包,其基于张量运算和动态计算图进行了优化。它可以帮助开发者快速构建和训练深度学习模型。而PyCharm是一种由JetBrains开发Python IDE,支持Python语言开发以及人工智能项目开发,代码编辑、调试、自动补全等功能全面。 这些工具的结合,可以帮助人工智能开发者更加高效地完成项目开发和管理。AI笔记提供了一个方便的记录和分享平台,可以让开发者在一个地方收集和整理自己的项目和经验。Anaconda拥有各种常用的数据科学工具和库,如NumPy、Pandas、Matplotlib等,方便开发者进行数据科学和机器学习相关的工作。PyCharm则可以协助开发者进行代码编写和调试,提高工作效率。PyTorch则可以用来构建和训练深度学习模型。总的来说,这些工具的结合可以方便快捷地进行人工智能项目开发和管理,减轻了人工智能开发者的负担。
评论 8
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值