三分钟极速体验:Java版人脸检测,mysql锁机制面试题

  • 为了简化操作,接下来会用到docker,对应的镜像体积巨大,达到了恐怖的4.69G,建议您为自己的docker做好加速配置,可以减少下载等待时间;

  • 由于opencv体积庞大,再加上javacv的依赖库也不小,这才导致超大镜像的出现,还望您多多海涵,标题中的《三分钟极速体验》是要去掉镜像的等待时间的,您要是觉得欣宸的标题起得很无耻,我觉得您是对的…

环境信息

  • 为了简化体验过程,接下来会用到docker,推荐的环境信息如下:

  • 操作系统:Ubuntu 16.04.1 LTS 服务器版(MacBook Pro也可以,版本是11.2.3,macOS Big Sur)

  • docker:20.10.2 Community

  • 为了加快docker镜像的下载速度,建议您提前做好docker加速配置

  • 文章标题号称三分钟极速体验,没时间说太多,准备好环境就火速动手啦

部署

  • 新建名为images的目录,用于存储处理后的文件,我这里完整路径是/root/temp/202107/17/images

  • 新建名为model的目录,用于存储稍后要下载的模型文件,我这里完整路径是/root/temp/202107/17/model

  • 下载训练好的模型文件,我准备了两个下载地址,您任选一个即可,一个是csdn的(无需积分):

  1. https://download.csdn.net/download/boling_cavalry/20352221,另一个是

  2. https://raw.githubusercontent.com/zq2599/blog_download_files/master/files/haarcascade_frontalface_default.zip

  • 上述文件下载下来是个压缩包,请先解压,再将文件haarcascade_frontalface_default.xml放入model目录(model里放的必须是解压后的文件)

  • 执行以下命令,会先下载docker镜像文件再创建容器:

docker run \

–rm \

-p 18080:8080 \

-v /root/temp/202107/17/images:/app/images \

-v /root/temp/202107/17/model:/app/model \

bolingcavalry/facedetect:0.0.1

  • 部署完成,开始体验

体验

  • 浏览器访问http://localhost:18080,这里的localhost请改成docker宿主机IP(要关闭防火墙!),可以见到操作页面,如下图(欣宸的前端开发水平渣到令人发指,果然不是空穴来风):

在这里插入图片描述

  • 找一张有人脸的图片(我在百度图片随机找的),点击上图的选取图片按钮进行上传,至于周围检测数量那里先保持默认值32不要动

  • 点击提交按钮后,页面会显示检测结果,如下图,人脸被准确的框选出来了:

在这里插入图片描述

  • 再试试多人的,如下图,居然一个人脸都没有检测到:

在这里插入图片描述

  • 把周围检测数量的值调低些,改成4再试,如下图,这次成功了,八张人脸全部检测到:

在这里插入图片描述

  • 至此,Java版人脸检测的体验已经完成,一分钟概览,一分钟部署,一分钟体验,咱们足够高效(下载超大镜像的时间不能算,不敢算…)

  • 此刻您应该能感受到Java在人脸识别领域的魅力了,聪明的您当然会有很多疑问,例如:

  1. 用了啥框架?

  2. 写了啥代码?

  3. 运行环境好不好配置?只要jar依赖吗?还需要其他操作吗?

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值