Ilya Sutskever,OpenAI的前首席科学家,曾经在一次演讲中公开提到
在人工智能的发展中,注意力的出现是最令人兴奋的一项技术进步,并且这项技术将长期存在于AI的基础算法架构中,很难被替代。
很明显,Ilya Sutskever 预言了这项技术的重要性。
这项技术之所以如此重要,很大程度上是因为——
注意力机制的来源,就是人类的天生感觉。AI 的注意力,模拟的是人类感官的第一性。
你可以观察上面的图像,然后思考一下:在观察这只狗的时候,你的注意力(眼睛观察的焦点)最开始放在了图像的什么地方?
这里暂停一下,请观察一下上图。
观察完毕后,请你继续往下看。
人类的视觉注意力,通常会用“高分辨率”关注自己感兴趣的区域(比如你的第一眼可能会落在上图中小狗的耳朵和鼻子上)。
同时用“低分辨率”感知周围的图像(比如你观察了好几遍之后,可能才会注意到雪地背景和小狗身上穿的衣服)。
在这种情况下,眼睛会不断地调整焦点,然后对图像进行推理,得出结论——
图像中是一只小狗(第一反应),披着衣服(可能是第二反应),站在雪地上(可能是第三反应)。
这便是典型的人类视觉系统的注意力机制。
这种机制可以帮助你快速从图像中获取关键信息,同时,以关键信息为基础进行更多的推理。
以上图为例,当你注意到小狗的鼻子和眼睛以及右侧的耳朵(红色框标识)后,你会自然而然的认为,在小狗的左侧会有一只类似右侧尖尖的耳朵存在(黄色框标识)。
这说明,鼻子、右侧的耳朵和嘴巴,对于推理出左侧的耳朵的存在非常重要。
这其中,右侧的耳朵可能更加重要,因为它可以直接给出左侧耳朵的形状和大致轮廓(镜像)。
而小狗身上穿着的衣服,对于推理出小狗左侧的耳朵形状这件事貌似没有太大帮助。
这便是注意力在图像推理中所展现的作用。
可能大家都想学习AI大模型技术,也想通过这项技能真正达到升职加薪,就业或是副业的目的,但是不知道该如何开始学习,因为网上的资料太多太杂乱了,如果不能系统的学习就相当于是白学。为了让大家少走弯路,少碰壁,这里我直接把全套AI技术和大模型入门资料、操作变现玩法都打包整理好,希望能够真正帮助到大家。
👉AI大模型学习路线汇总👈
大模型学习路线图,整体分为7个大的阶段:(全套教程文末领取哈)
第一阶段: 从大模型系统设计入手,讲解大模型的主要方法;
第二阶段: 在通过大模型提示词工程从Prompts角度入手更好发挥模型的作用;
第三阶段: 大模型平台应用开发借助阿里云PAI平台构建电商领域虚拟试衣系统;
第四阶段: 大模型知识库应用开发以LangChain框架为例,构建物流行业咨询智能问答系统;
第五阶段: 大模型微调开发借助以大健康、新零售、新媒体领域构建适合当前领域大模型;
第六阶段: 以SD多模态大模型为主,搭建了文生图小程序案例;
第七阶段: 以大模型平台应用与开发为主,通过星火大模型,文心大模型等成熟大模型构建大模型行业应用。
👉大模型实战案例👈
光学理论是没用的,要学会跟着一起做,要动手实操,才能将自己的所学运用到实际当中去,这时候可以搞点实战案例来学习。
👉大模型视频和PDF合集👈
观看零基础学习书籍和视频,看书籍和视频学习是最快捷也是最有效果的方式,跟着视频中老师的思路,从基础到深入,还是很容易入门的。
👉学会后的收获:👈
• 基于大模型全栈工程实现(前端、后端、产品经理、设计、数据分析等),通过这门课可获得不同能力;
• 能够利用大模型解决相关实际项目需求: 大数据时代,越来越多的企业和机构需要处理海量数据,利用大模型技术可以更好地处理这些数据,提高数据分析和决策的准确性。因此,掌握大模型应用开发技能,可以让程序员更好地应对实际项目需求;
• 基于大模型和企业数据AI应用开发,实现大模型理论、掌握GPU算力、硬件、LangChain开发框架和项目实战技能, 学会Fine-tuning垂直训练大模型(数据准备、数据蒸馏、大模型部署)一站式掌握;
• 能够完成时下热门大模型垂直领域模型训练能力,提高程序员的编码能力: 大模型应用开发需要掌握机器学习算法、深度学习框架等技术,这些技术的掌握可以提高程序员的编码能力和分析能力,让程序员更加熟练地编写高质量的代码。
👉获取方式:
😝有需要的小伙伴,可以保存图片到wx扫描二v码免费领取【保证100%免费】🆓