应用大模型需要规避的“坑”

过去一年,我们的大模型面临学习的过程,最开始我们也很兴奋,以为大模型无所不能。我们在接了约100多个PoC(概念验证)后,发现70%的项目都失败了。我们总结经验教训之后,才使一些项目获得成功。

《企业家》杂志

弘扬企业家精神 传播管理智慧

在这里插入图片描述

周鸿祎

360集团创始人

01

做大模型存在五个误区

一是追求宏大叙事。有人总想脱离具体场景做一个宏大的产业大模型,实际上这是很难交付的。

二是追求万能。很多企业总想做万能大模型以解决所有的问题,事实上大模型无法实现。

三是绕开原来的IT系统。有人以为有大模型就可以放弃原来的IT系统,这显然是错误的。大模型只是大脑,可能只有嘴巴和耳朵,加上原来的IT系统,它才有手有脚,才能进入自动驾驶状态。

四是跳过数字化阶段。有观点认为做大模型可以跳过数字化阶段实现弯道超车,但如果没有数字化的积累,就不会有数据、知识,自然做不出自己的大模型。

五是轻信用户提示词。虽然微软创造性地提出了比较合适的Copilot(AI代码助手),但在业务上Copilot的模式并不是很适用,不要轻信用户提示词,提示词是目前中国用户、企业用户使用人工智能的最大障碍。

02

做大模型的五个方法

方法一是找垂直场景。只要我们改变思路,不追求全能大模型,而是一个大模型在企业找一个场景,找一个细分的切口,让一个模型做一件事,大模型就会有效落地,找场景是第一个要点。第二个要点是知识管理,知识密度和知识质量是实现智能化升级的关键。做大模型对知识的要求非常高,但很多公司知识散落在企业内部,非常碎片化,有很多知识需要进行二次加工。有些知识在员工大脑里,如何把这些知识捕获下来非常重要。

方法二是将多个专业模型组合起来工作,使每个模型都可以更小。按照这个思路做大模型,很多问题就能迎刃而解。我们不要轻信模型参数,OpenAI只是大模型发展的一条路径、一种方向,它的目标是要卷万亿、百万亿等参数,我们不需要那么大的参数,百亿就够用;算力上也不需要百卡、千卡,有时候几卡甚至单机、单个4090就可以运转起来。所以在成本上不需要投上千万元、上亿元的资金,很多企业只需投入百万元、几十万元的资金就可以拥有自己的大模型。目前国内提供的开源模型能力即使与GPT-4有点差距,但足够好用,这样做出来的模型响应速度更快、用户体验也更好。

比如,360AI浏览器原来用一个千亿模型速度很慢,现在换了5个百亿模型共同支撑,速度提高了10倍。模型一定要进行私有化部署,这样的模型对人才、训练、工具的要求都会降低很多。

方法三是加强专家模型协同。要实现一个功能,需要有一套技术架构使多个大模型协同工作,传统的MoE(专家混合模型)架构只能实现简单的任务路由分发,专家模型之间不能协同就难以胜任复杂任务。360集团用大脑多功能分区的原理首创造了CoE架构,所谓CoE就是专家协同,它使得多个专家模型形成整体。

方法四是构建重要智能体,即Agent框架。大模型和人脑非常类似,但至今比不上人脑,因为人脑有快思考、慢思考两种方式。大模型常见的是快思考,问“2+2”等于几,它脱口而出。但遇到复杂的问题,比如写一篇论文、做分析,人类是需要慢思考的,需要调动规划和反思、逻辑推理能力,速度虽慢但准确性高。我们创造性地提出用Agent框架打造慢思考的系统,通过知识、工具和提高大模型规划能力,打造大模型的慢思考能力。

方法五是融合工作流。企业大模型不是顾问,不能靠做一个聊天机器人解决问题。所以,需要通过工作流软件和用户原来的IT系统融会贯通,相当于把大模型看成工作节点同企业原来的不同业务工作流连在一起。从国际上看,工作流软件的重要性越来越重要。

在这套方法论的指导下,我们打造了360安全大模型,经过对比测试,这个大模型在安全能力上超过了GPT-4,其他能力不跟它比,因为它是全能冠军,我们是单项冠军。

模型不是产品是能力,能力要结合场景,使之产品化才能发挥价值。

我们把大模型和安全大脑结合起来,显著提升了用户的效率。以某大型央企的数据为例,它有15万台服务器的资产规模,过去盘点资产需要30天,现在只需要2天;过去每人每天处置事件近50个,现在每人每天可以处置事件200个,人效提高300%,这是我们期望达到的目标。

在这里插入图片描述

大模型&AI产品经理如何学习

求大家的点赞和收藏,我花2万买的大模型学习资料免费共享给你们,来看看有哪些东西。

1.学习路线图

在这里插入图片描述

第一阶段: 从大模型系统设计入手,讲解大模型的主要方法;

第二阶段: 在通过大模型提示词工程从Prompts角度入手更好发挥模型的作用;

第三阶段: 大模型平台应用开发借助阿里云PAI平台构建电商领域虚拟试衣系统;

第四阶段: 大模型知识库应用开发以LangChain框架为例,构建物流行业咨询智能问答系统;

第五阶段: 大模型微调开发借助以大健康、新零售、新媒体领域构建适合当前领域大模型;

第六阶段: 以SD多模态大模型为主,搭建了文生图小程序案例;

第七阶段: 以大模型平台应用与开发为主,通过星火大模型,文心大模型等成熟大模型构建大模型行业应用。

2.视频教程

网上虽然也有很多的学习资源,但基本上都残缺不全的,这是我自己整理的大模型视频教程,上面路线图的每一个知识点,我都有配套的视频讲解。

在这里插入图片描述

在这里插入图片描述

(都打包成一块的了,不能一一展开,总共300多集)

因篇幅有限,仅展示部分资料,需要点击下方图片前往获取

3.技术文档和电子书

这里主要整理了大模型相关PDF书籍、行业报告、文档,有几百本,都是目前行业最新的。
在这里插入图片描述

4.LLM面试题和面经合集

这里主要整理了行业目前最新的大模型面试题和各种大厂offer面经合集。
在这里插入图片描述

👉学会后的收获:👈
• 基于大模型全栈工程实现(前端、后端、产品经理、设计、数据分析等),通过这门课可获得不同能力;

• 能够利用大模型解决相关实际项目需求: 大数据时代,越来越多的企业和机构需要处理海量数据,利用大模型技术可以更好地处理这些数据,提高数据分析和决策的准确性。因此,掌握大模型应用开发技能,可以让程序员更好地应对实际项目需求;

• 基于大模型和企业数据AI应用开发,实现大模型理论、掌握GPU算力、硬件、LangChain开发框架和项目实战技能, 学会Fine-tuning垂直训练大模型(数据准备、数据蒸馏、大模型部署)一站式掌握;

• 能够完成时下热门大模型垂直领域模型训练能力,提高程序员的编码能力: 大模型应用开发需要掌握机器学习算法、深度学习框架等技术,这些技术的掌握可以提高程序员的编码能力和分析能力,让程序员更加熟练地编写高质量的代码。
在这里插入图片描述

1.AI大模型学习路线图
2.100套AI大模型商业化落地方案
3.100集大模型视频教程
4.200本大模型PDF书籍
5.LLM面试题合集
6.AI产品经理资源合集

👉获取方式:
😝有需要的小伙伴,可以保存图片到wx扫描二v码免费领取【保证100%免费】🆓

在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

程序员辣条

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值