- 博客(54)
- 收藏
- 关注

原创 AladdinEdu使用手册
AladdinEdu的使用主要分为三步,workshop建立 > 环境配置 > GPU调用,以下内容将围绕此流程展开。
2025-04-16 18:38:28
2254
2
原创 GPU-CPU-FPGA三维异构计算统一内存架构实践:基于OpenCL的跨设备Kernel动态迁移方案(附内存一致性协议设计)
当摩尔定律逼近物理极限,异构计算成为突破算力瓶颈的关键路径。统一内存架构(UMA)通过构建跨设备虚拟地址空间,有效解决了传统异构系统的三大痛点:数据搬运开销(降低延迟96%)、编程复杂度(简化内存管理)和资源利用率(提升FPGA利用率至60%+)。核心技术包括OpenCL统一内存机制(零拷贝传输、按需分页)、动态Kernel迁移引擎(迁移耗时22μs)和优化的内存一致性协议。在金融仿真、医学影像等场景实现3-5倍加速,吞吐量提升2.3倍。未来将结合CXL 3.0、存算一体等新技术,构建TB级共享内存空间。开
2025-06-12 14:46:41
397
原创 大规模实验管理系统的GPU资源调度设计(基于优先级队列的动态算力分配算法)
本文针对高校科研计算场景中GPU集群利用率波动大、资源碎片化严重等问题,提出了一种基于动态优先级队列的调度系统(DPQS)。该系统通过多维特征动态计算任务优先级,并采用整数规划模型进行资源分配,有效解决了传统静态分配策略的资源浪费、优先级倒置和突发负载应对不足等问题。系统架构包括任务提交终端、优先级计算引擎、资源监控器、分配决策器和抢占控制器等核心模块,并通过自适应权重调整、资源碎片整理和安全抢占机制等算法实现高效调度。实验结果表明,DPQS在清华超算中心的真实负载测试中显著提升了资源利用率和任务完成效率。
2025-05-22 10:33:21
503
原创 论文复现工程指南:从arXiv到可运行代码的GPU适配实践(解决框架版本差异与硬件不兼容的典型问题)
在人工智能领域,论文复现失败的主要原因集中在环境配置问题上,包括框架版本不兼容、硬件适配困难和依赖冲突等。本文以《Masked Autoencoder for Scalable Vision Model》为例,详细介绍了从Docker到虚拟环境的全栈隔离方法,以及如何处理PyTorch API变更、CUDA算力兼容性和自定义算子迁移等典型问题。此外,文章还提供了GPU显存不足和多卡训练的优化技巧,以及依赖冲突的解决方案。通过系统化的复现工程实践,研究者可以显著提高论文复现的成功率,从不足20%提升至85%以
2025-05-22 09:17:40
363
原创 非欧空间计算加速:图神经网络与微分几何计算的GPU优化(流形数据的内存布局优化策略)
在三维形状分析、社交网络建模、分子动力学模拟等领域,非欧几里得空间数据(流形数据)的处理正推动人工智能技术向更复杂的几何结构迈进。传统欧式空间优化方法在处理流形数据时面临根本性局限:黎曼度量导致距离计算失效、局部坐标系动态变化引发内存访问模式混乱、曲率变化影响并行计算效率。本文提出基于分块流形存储(Blocked Manifold Storage, BMS)与层次化张量映射(Hierarchical Tensor Mapping, HTM)的优化方案,在NVIDIA A100上实现:
2025-05-21 17:07:22
815
原创 符号计算与GPU加速:Mathematica CUDA集成开发指南(微分方程求解的混合精度加速方案)
在科学计算领域,符号计算系统(如Mathematica)与GPU加速技术的结合正在推动计算范式的变革。通过Mathematica的CUDA集成,开发者可以实现符号预处理加速、混合精度流水线和异构任务调度,显著提升计算效率。例如,在三维Navier-Stokes方程求解中,混合精度方案比纯双精度计算快3.2倍,同时保持高精度。Mathematica 13.0+提供了完整的CUDA编程支持,包括符号预处理、自动代码生成和异构执行,支持动态精度调节。未来,符号感知的GPU编译、量子计算混合加速和自适应精度控制等方
2025-05-21 09:14:45
944
原创 基于JAX的自动微分系统优化:从XLA编译到GPU代码生成(对比JAX与PyTorch的算子融合策略差异)
本文深入探讨了深度学习框架中自动微分(AD)系统的核心挑战与优化方向,重点对比了JAX和PyTorch两大主流框架的技术路径。JAX基于XLA编译器与函数式编程范式,强调函数纯度、高阶微分支持和符号微分加速;而PyTorch依托动态计算图与即时编译技术,提供动态图灵活性和有限高阶导数支持。文章详细分析了两者在编译器架构、算子融合策略和GPU代码生成方面的差异,并提供了性能基准对比。最后,根据应用场景提出了框架选型建议,并展望了未来发展方向,包括统一内存架构、异构编译优化和量子计算集成。通过理解这些底层机制,
2025-05-20 14:05:12
1513
原创 深度学习框架显存泄漏诊断手册(基于PyTorch的Memory Snapshot对比分析方法)
本文深入探讨了深度学习开发中常见的显存泄漏问题,并提供了基于PyTorch的Memory Snapshot工具链的详细诊断方法。文章首先分析了显存泄漏的常见场景及其影响,随后解析了PyTorch的显存管理机制,包括显存分配器的工作原理和Python对象与显存的生命周期绑定。接着,文章详细介绍了如何使用Memory Snapshot工具生成和对比显存快照,并通过案例展示了从快照分析到泄漏点定位的完整过程。最后,文章提出了显存泄漏的防御性编程规范,并展望了未来显存管理技术的发展方向。通过本文,开发者可以掌握显存
2025-05-20 13:29:56
1319
原创 CUDA Stream的进阶用法:流水线并行的资源竞争解决方案
本文探讨了多任务推理场景中GPU资源利用的优化策略。首先,分析了传统单流架构的缺陷,如SM资源利用率低和显存带宽瓶颈。接着,回顾了CUDA Stream的基础知识,包括流的本质和隐式同步陷阱。文章提出了流水线并行设计原则,包括多阶段任务拆分和硬件资源映射策略。随后,深入分析了资源竞争的关键点,如SM内部竞争和全局资源瓶颈。针对这些问题,提出了实战解决方案,包括流优先级动态分配、硬件资源隔离和动态调度算法。最后,通过视频分析和自然语言处理两个案例展示了优化效果,并提供了性能测试和优化建议。文章强调,未来应结合
2025-05-19 14:08:07
956
原创 GPU硬件计数器深度用法:通过NVIDIA Nsight Compute定位隐藏的性能瓶颈——以DRAM访问模式对带宽利用率影响分析为例
本文探讨了在GPU高性能计算中,DRAM访问模式对显存带宽利用率的影响,并提出了优化策略。通过NVIDIA Nsight Compute工具,分析了DRAM访问模式对深度学习训练任务性能的瓶颈,指出约38%的kernel性能受限于显存带宽。文章详细介绍了Nsight Compute的硬件计数器采集体系,特别是DRAM分析专用指标,并提出了优化DRAM访问模式的方法,如分块和共享内存技术。通过矩阵转置kernel的优化案例,展示了优化前后的性能对比。此外,文章还介绍了Roofline模型的构建方法,用于定位典
2025-05-19 11:50:22
993
原创 光子神经网络加速器编程范式研究:光子矩阵乘法的误差传播模型构建
本文探讨了光子计算范式的演进及其在矩阵乘法中的应用。首先,分析了电子芯片的物理极限,并对比了光子计算的优势。接着,详细介绍了光子矩阵乘法的基本原理,包括马赫-曾德尔干涉器阵列和矩阵映射方法。文章还构建了误差传播模型,分析了主要误差来源,并推导了数学模型。此外,设计了误差感知编译框架和关键优化技术,提出了动态重配置策略和混合精度配置。最后,通过实验验证了光电混合验证系统的有效性,并展示了ResNet-50推理任务的关键结果。本文的研究符合相关技术规范和人工智能发展规划。
2025-05-19 08:17:36
1026
原创 存内计算在AI推理中的落地挑战:从理论算力到实际吞吐量的鸿沟
文章深入探讨了存内计算技术的演进路线,特别是内存墙困境的量化分析,指出传统架构下数据搬运能耗高、内存访问延迟大等问题。对比了存内计算的两大技术流派,并详细解析了HBM-PIM和UPMEM架构的创新点,包括硬件设计、编程模型和任务调度机制。文章还分析了从理论到实践的性能差异,指出数据预处理、任务调度和内存墙异化等系统性瓶颈。最后,讨论了工程实践中的工具链成熟度和算法适配改造挑战,并强调了合规性声明,确保技术讨论基于公开资料并符合法律要求。
2025-05-18 18:30:26
849
原创 Chiplet技术对GPU设计的影响:从NVIDIA Grace到国产芯片
文章深入探讨了Chiplet技术的发展现状,分析了传统GPU架构的局限性,并介绍了NVIDIA Grace Hopper架构的芯片级互联方案和功耗效率突破。同时,文章还展示了国产GPU芯片的实践案例,如寒武纪MLU370-X8和壁仞科技BR100的创新技术。此外,文章对硅中介层带宽瓶颈进行了深度分析,并探索了光子互连集成和三维堆叠技术等前沿技术。最后,文章声明了所有技术数据的来源和合规性,并附有技术术语表。
2025-05-18 10:21:46
788
原创 基于RDMA的跨节点GPU显存共享技术实践
文章深入探讨了分布式AI训练中的显存瓶颈问题,并对比了不同技术选型。重点介绍了GPUDirect RDMA实现方案,包括系统架构设计、关键技术实现和性能优化要点。同时,文章还探讨了CXL显存池化技术的实践,包括核心特性、实验平台搭建和缓存一致性实现。通过延迟对比测试,分析了GPUDirect RDMA和CXL的优劣势,并提供了工程部署实践指南。最后,文章展望了技术趋势,包括协议融合发展和硬件演进方向,并强调了合规性声明。
2025-05-18 09:55:12
1051
原创 弹性算力池构建:抢占式GPU实例的容错训练方案
文章深入探讨了抢占式GPU实例在深度学习训练中的机遇与挑战,分析了典型中断场景和传统方案的局限性。提出了智能Checkpoint机制和梯度累积的断点恢复技术,设计了弹性算力池架构,并详细介绍了核心组件的实现。通过实测数据展示了性能对比,并给出了最佳实践建议。未来研究方向包括分布式训练框架、训练轨迹压缩存储技术和联邦学习场景下的弹性训练协议。该方案已在多个项目中验证,显著提升了训练效率。
2025-05-15 14:31:18
731
原创 GPU与NPU异构计算任务划分算法研究:基于强化学习的Transformer负载均衡实践
本文探讨了在边缘计算与AI推理场景中,如何通过GPU-NPU异构计算架构优化Transformer类大模型的部署。文章提出了一种基于强化学习的动态任务划分策略,旨在解决算子特征匹配、传输时延敏感和动态负载波动等核心问题。通过改进型PPO算法,设计了双层决策机制,并在ONNX Runtime构建的仿真环境中进行训练优化。实验结果表明,该策略在BERT-base模型上实现了端到端延迟降低35.5%,显著提升了负载均衡效果。未来研究方向包括温度感知调度、混合精度支持和通信压缩等工程优化。本文为异构计算环境下的模型
2025-05-15 10:59:30
1153
原创 多模态大模型的显存墙突破:跨模态参数共享架构设计与GPU显存动态加载实践
随着多模态大模型的发展,显存需求激增,传统方法面临挑战。本文提出跨模态参数共享和显存分页动态加载的优化方案,可降低显存占用40%-60%。通过分析多模态模型的显存消耗和跨模态参数的冗余性,提出动态显存分页机制,包括参数热度分级策略、零拷贝数据传输和显存-计算重叠优化。实验验证了该方案在ViT-22B多模态模型上的有效性,未来研究方向包括智能预取算法、异构存储架构和量子化压缩。
2025-05-15 09:07:11
1784
原创 扩散模型推理加速:从DDIM到LCM-Lora的GPU显存优化策略
本文探讨了显存优化在扩散模型中的应用,特别是针对Stable Diffusion等图像生成模型的显存压力问题。通过DDIM加速框架、显存压缩策略、计算图重写技术以及LCM-LoRA创新方法,实现了显存占用降低80%的同时保持视觉质量。实验验证表明,联合优化方案在单卡RTX 4090上实现了5.3倍显存压缩和5倍加速,为消费级显卡上的实时图像生成提供了可行路径。未来研究方向包括自适应稀疏训练、渐进式量化和分布式推理优化,以进一步推动生成式AI在边缘设备的落地。
2025-05-14 15:04:05
1167
原创 动态稀疏化训练系统设计:从算法到GPU硬件协同优化
本文探讨了动态稀疏化训练在深度学习中的价值与挑战,特别是在模型规模指数级增长的背景下。文章详细解析了NVIDIA Ampere架构的硬件创新,包括稀疏Tensor Core的设计原理和硬件-软件协同接口。通过双层级联剪枝策略和编译器优化关键技术,动态稀疏训练系统在混合专家模型(MoE)场景中实现了显著的加速效果,最高可达3.8倍。实验结果表明,动态稀疏化在保持精度的同时,显著提升了计算利用率和训练速度。文章还提出了未来优化方向,如自适应稀疏模式和分布式稀疏通信,以进一步推动该技术的应用和发展。
2025-05-14 13:57:17
1130
原创 GPU原子操作的性能陷阱与替代方案——基于锁无关编程的并行归并算法在GNN图聚合中的实践
文章探讨了GPU原子操作在大规模图神经网络(GNN)训练中的性能瓶颈及其优化方案。传统原子操作在顶点度数差异较大时效率骤降,主要由于硬件执行序列化、缓存一致性开销和负载不均衡等问题。为应对这些挑战,提出了锁无关归并算法,通过分块归并架构和关键优化技术,显著提升了GNN训练效率。实验显示,在高度不均衡的图数据上,单个epoch训练耗时减少41%。此外,文章还指出了技术挑战和前沿突破方向,并为GNN开发者提供了最佳实践建议。这场从原子操作到归并算法的范式迁移,正在重塑GNN训练系统的设计哲学。
2025-05-13 09:53:51
1168
原创 GPU L2 Cache一致性协议对科学计算的影响研究
文章探讨了GPU缓存层级的演进及其在CFD仿真中的优化实践。从Volta到Hopper架构,GPU缓存容量和策略不断升级,如Volta引入统一L2 Cache,Ampere提升至40MB并引入异步拷贝引擎,Hopper则突破至60MB并集成TMA控制器。文章分析了不同架构在CFD仿真中的表现,并提出了针对性的优化策略,如利用Texture Cache、异步内存操作和智能数据预取等。此外,文章还讨论了跨架构统一优化框架和缓存感知编程范式,强调了数据布局和混合精度访问的重要性。未来,智能缓存预测、异构缓存分区和
2025-05-12 14:51:56
1057
原创 GPU SIMT架构的极限压榨:PTX汇编指令级并行优化实践
文章深入探讨了NVIDIA GPU的SIMT架构调度策略,特别是Warp Scheduler的演进和寄存器压力平衡技术。通过PTX汇编语言,展示了卷积核的优化策略,包括内存访问优化、指令流水优化和寄存器重映射技术。性能测试在NVIDIA A100平台上进行,验证了优化效果。文章还提出了深度优化的启示,如ILP与TLP的平衡、混合精度策略和动态指令调度。最终,强调了GPU性能优化需要多维度的视角,包括时间、空间和资源维度,并展望了结合新一代Hopper架构的优化潜力。
2025-05-12 14:15:44
1165
原创 基于Transformer的算力供需动态平衡算法研究与实践
本模型已在国内某超算中心实现落地应用,支持每天百万级计算任务的智能调度。随着AI芯片的异构化发展,下一步将研究面向Chiplet架构的3D资源分配算法。欢迎学术界和工业界同仁共同推进这一前沿领域的研究。
2025-05-08 11:49:21
857
原创 算力经济模型推演:从中心化到去中心化算力市场的转变(区块链+智能合约的算力交易原型设计)
传统算力市场以超算中心、云计算平台为核心载体,其运营模式呈现强中心化特征。中国移动构建的"四算融合"网络虽实现百万级服务器的智能调度,但动态资源分配仍受制于集中式控制架构。
2025-05-05 18:38:27
632
原创 GPU集群监控系统开发实录:基于Prometheus+Grafana的算力利用率可视化方案
资源闲置率下降42%故障平均修复时间(MTTR)缩短至15分钟支撑3篇顶会论文的实验数据分析未来可结合eBPF技术实现更细粒度的内核级监控,并探索LLM驱动的异常根因分析。欢迎学术同行在遵循Apache 2.0和的前提下,参考本文的开源实现(项目地址:https://github.com/xxx/gpu-monitoring)。版权声明:本文中涉及的第三方工具配置示例均来自各项目官方文档,相关商标权利归属各自所有者。
2025-05-03 10:06:08
781
原创 MLPerf基准测试工具链定制开发指南:构建领域特异性评估指标的实践方法
当MLPerf工具链插上定制化的翅膀,性能评估不再是刻板的数字游戏。通过在OpenCatalyst项目中实现原子结合能预测误差与稳定性系数的双指标评估体系,我们见证了领域知识注入如何使基准测试焕发新生。这启示我们:优秀的评估系统应该像DNA一样——既保持核心结构的稳定,又具备适应环境变化的突变能力。本文开发示例基于MLPerf v3.1修改版,完整代码已开源。引用出处[1]: MLPerf官方文档 v3.1。
2025-05-02 22:41:31
1202
原创 PyTorch 2.0编译模式深度评测:图优化对GPU利用率的影响
PyTorch 2.0通过TorchDynamo与XLA的互补优势,正在重塑深度学习训练的能效曲线。当ResNet-50的GPU利用率突破90%大关,我们看到的不仅是技术指标的跃升,更是编译器技术对计算本质的深刻理解——在动态与静态的平衡中寻找最优解。本文实验数据基于PyTorch 2.3 nightly版本。
2025-05-02 09:31:23
1230
原创 存算一体架构下的新型AI加速范式:从Samsung HBM-PIM看近内存计算趋势
存算一体不是简单的技术改良,而是对计算本质的重新思考。当HBM-PIM将能效边界推向10 TFLOPS/W,我们正站在架构革命的临界点。这场变革的终极目标,是让计算回归数据本源——在比特诞生的地方处理比特。本文实验数据基于Samsung Aquabolt-XL HBM-PIM实测,更多技术细节请参考ISSCC 2023论文《A 1ynm 16Gb 4.8TFLOPS/W HBM-PIM with Bank-Level Programmable AI Engines》。
2025-05-01 21:42:17
2473
原创 量子机器学习中的GPU加速实践:基于CUDA Quantum的混合编程模型探索
通过CUDA Quantum实现GPU加速的量子机器学习,我们正在突破传统计算的物理边界。本文展示的技术路径表明,结合NVIDIA GPU的并行计算能力与量子计算的叠加优势,可显著提升混合算法的实用价值。随着硬件架构的持续演进,量子机器学习有望在药物发现、材料模拟等领域实现突破性应用。
2025-04-30 13:31:53
1228
1
原创 你的模型还在卡迭代?AladdinEdu已空投H卡!
炼丹师”,欢迎来到你的道场!这里是——这是我们第一次上线公测,因此在您订阅我们GPU服务之前,我有一些信息与您分享~
2025-04-30 09:39:03
2009
原创 光子计算芯片进展评估:下一代AI算力突破的可能性
当NVIDIA在GTC 2025宣布集成光子协处理器时,标志着两大技术路线从对立走向融合。这种"光电异构"架构可能催生新计算范式:电子芯片处理分支逻辑和状态控制,光子芯片承担矩阵运算等稠密计算。清华大学"太极"芯片在AGI任务中展现的千倍能效优势,预示着光子计算有望在2030年前突破"替代电子芯片"的临界点。这场算力革命不仅关乎技术路径选择,更是整个AI基础设施的重构竞赛。该结构在ImageNet分类任务中实现89.2%准确率,功耗降低至H100的1/15。光子计算芯片的核心创新点体现在:。
2025-04-26 16:17:50
821
原创 HPC与AI工作负载的GPU利用率对比诊断(使用Nsight Compute进行指令级性能剖析)
当HPC应用在V100上达到98%的理论利用率却仍比A100慢3倍时,我们意识到单纯的利用率指标已不足以衡量现代GPU的真实效能。通过Nsight Compute的指令级洞察,开发者可以穿透表象,直指性能优化的核心矛盾——在计算密度与内存带宽之间找到属于特定工作负载的黄金平衡点。
2025-04-25 14:18:04
1316
原创 GPU热设计功耗(TDP)与计算效率的平衡艺术:动态频率调节对算法收敛速度的影响量化分析
当单颗GPU的功耗开始逼近小型空调的功率,我们需要重新思考计算效率的本质。实验证明,通过智能化的动态频率管理,可以在不牺牲模型精度的前提下,将训练过程的碳排放降低20%以上。这种硬件与算法的协同优化,正在重新定义高效计算的范式。
2025-04-24 14:51:17
1099
原创 AI编译器技术深探:TVM与Triton的算子优化哲学对比
通过构建多层可扩展IR系统(如Affine Dialect、GPU Dialect),MLIR实现了从算法描述到硬件指令的全流程统一表达。现代AI编译器的核心目标是通过计算与调度分离(Separation of Computation and Scheduling)实现算子的极致性能优化。TVM继承了Halide的衣钵,构建了分层编译架构。其Relay中间表示层专注于计算图的全局优化(如算子融合、常量折叠),而TVM层通过调度模板(Schedule Template)实现算子级优化。
2025-04-22 11:21:47
1467
原创 边缘计算场景下的GPU虚拟化实践(基于vGPU的QoS保障与算力隔离方案)
边缘GPU虚拟化正在经历从"能用"到"好用"的技术跃迁。异构计算统一抽象层(兼容CUDA/MLU/昇腾等架构)联邦学习驱动的动态调度(基于全局负载预测)存算一体的虚拟化方案(显存与计算资源联合优化)
2025-04-21 15:35:56
993
原创 国产GPU生态现状评估:从寒武纪到壁仞的编程适配挑战
国产GPU生态建设正处于“硬件追赶→软件攻坚→生态突破”的关键阶段。短期来看,通过中间件兼容层和框架适配可缓解迁移阵痛;长期则需构建自主技术标准体系,在指令集设计、工具链开发、社区运营等维度实现系统性突破。优先选择TensorFlow等成熟框架针对国产架构特点优化数据局部性积极参与开源社区共建生态唯有实现“性能可用性→开发便捷性→生态丰富性”的递进突破,国产GPU才能真正走出CUDA的生态阴影。
2025-04-19 23:53:03
1168
原创 算力网络构建实践:Kubernetes+Slurm混合调度方案设计(多集群GPU资源动态分配算法实现)
的特征,涵盖大规模分布式训练、实时推理服务、科学计算等差异化负载类型。Kubernetes与Slurm的协同工作模式突破单系统局限:。结合Prometheus监控数据实现分钟级响应。(注:测试数据集包含1.2万个混合类型任务)通过滑动窗口算法动态调整预留比例。当前AI训练场景呈现。
2025-04-17 14:57:52
990
原创 混合精度训练失效场景诊断手册(从数值稳定性角度分析FP16/FP8的适用边界)
混合精度训练通过将FP32、FP16、FP8等不同位宽的浮点类型组合使用,在保证模型收敛性的前提下提升计算效率。(数据说明:FP8在x>5时无法表征Sigmoid函数的变化)(注:该策略在LLaMA-7B训练中实现收敛速度提升35%)(数据说明:动态调整方案在速度与精度间取得最佳平衡)在参数更新阶段强制转换为高精度执行累加。
2025-04-16 16:19:27
729
原创 分布式训练通信优化:如何突破AllReduce的带宽瓶颈
在BLOOM-176B训练中,ZeRO-3使单卡显存需求从2.4TB降至30GB,通信频率减少60%。该方案可将通信量减少94%,但需要额外10%计算资源维护残差(ImageNet训练提速2.1倍)。该方案在V100集群上实现83%通信重叠率,有效隐藏45%延迟。
2025-04-16 13:58:16
526
原创 AladdinEdu(H卡GPU算力平台)使用教程: 1)注册与开通流程 2)插件使用流程
AladdinEdu使用教程:1)注册与开通流程 2)插件使用流程
2025-04-15 15:04:32
1711
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人