本文是针对《Principled Instructions Are All You Need for Questioning LLaMA-1/2, GPT-3.5/4》的解读。“有原则的指令是你需要的,用于提问LLaMA-1/2, GPT-3.5/4。”
论文地址:
https://arxiv.org/abs/2312.16171
01
有哪26种套路
-
如果你希望得到直接的回答,无需使用礼貌用语如“请”、“谢谢”等。
-
在提问时,明确你的听众,比如告诉大型语言模型(LLM)你的听众是该领域的专家。
-
将复杂问题拆分为多个简单问题,逐一解决。
-
用肯定句式表达需求,比如“做这件事”,而不是“不要做那件事”。
-
当你需要更深入理解某个主题时,可以这样提问:
-用简单的语言解释[具体话题]。
-像对一个11岁的孩子解释一样,向我解释。
-像对[领域]的新手解释一样,向我解释。
-用简单的英文写[文章/文本/段落],就像你在向5岁的孩子解释一样。
-
如果有更好的答案,可以激励性地提出:“如果有更优解,我会奖励xxx”。在提问中使用具体例子。
-
用具体的例子来提问(即使用几个示例来引导)。
-
在提问前,使用“###指示###”、“###示例###”或“###问题###”等标签,并用空行分隔不同部分。
-
使用“你的任务是”或“你必须”等引导词。
-
使用“你将受到惩罚”等警示性语句。
-
鼓励自然地回答问题,比如“像人一样自然地回答问题”。
-
引导思考,比如“一步步来思考”。
-
确保回答无偏见,避免刻板印象。
-
让LLM通过提问获取更多信息,比如“从现在起,请你问我问题,直到你有足够的信息…”。
-
如果你想测试对某个话题的理解,可以说:“教我[定理/话题/规则],最后进行测试,等我回答后告诉我是否正确,但不要提前给答案。”
-
为LLM指定角色。
-
使用分隔符来组织问题。
-
在问题中重复特定词或短语。
-
结合链式思维(CoT)和少量示例的提示。
-
在问题结尾使用输出引导语,提示预期的回答开头。
-
当需要写详细的文章或段落时,可以说:“请为我写一篇详细的[文章/段落],内容涉及[话题],并包含所有必要的信息。”
-
如果要修改文本而不改变风格,可以说:“请修改用户发送的每个段落,只改进语法和词汇,使其更自然,但保持原有的写作风格,确保正式的段落仍然正式。”
-
当需要生成跨多个文件的代码时,可以说:“从现在起,每当你生成跨多个文件的代码时,生成一个[编程语言]脚本,自动创建或修改指定的文件以插入生成的代码。”
-
如果你想用特定的词、短语或句子开始或继续一段文字,可以说:“我提供给你开头部分[歌词/故事/段落/文章…]: [插入词/短语/句子]。请根据提供的词语完成它,并保持一致的流畅性。”
-
明确指出模型必须遵循的要求,可以是关键词、规则、提示或指令。
-
当需要写与提供的样本风格相似的文本时,可以说:“请根据提供的段落[/标题/文本/文章/答案]使用相同的语言。”
02
效果对比
**在不同尺寸的模型**
“回答质量增强:无论是小型(7B)、中型(13B)还是大型语言模型(70B以及GPT-4.5/4),其回答质量均有显著提升。特别是技巧2、5、15、16、25和26,在提升大型模型的表现上尤为突出。技巧14则在所有规模的模型中均显示出显著的改进效果:
鼓励语言模型通过提问来获取更多信息,直到它能够充分回答你的问题。例如,可以这样指示:“从现在开始,你可以通过向我提问来收集信息,直到你能够回答我的问题为止。””
精确度增强:应用这些策略后,各类语言模型的平均精确度提升幅度在20%至40%之间。具体来说,小型和中型模型的精确度提升范围是10%到40%,而大型模型的精确度提升更是超过了40%。在比较精确度方面,所有模型的性能平均提升了超过10%,其中大型模型的提升幅度甚至达到了20%以上。
更细致的的比较
大模型&AI产品经理如何学习
求大家的点赞和收藏,我花2万买的大模型学习资料免费共享给你们,来看看有哪些东西。
1.学习路线图
第一阶段: 从大模型系统设计入手,讲解大模型的主要方法;
第二阶段: 在通过大模型提示词工程从Prompts角度入手更好发挥模型的作用;
第三阶段: 大模型平台应用开发借助阿里云PAI平台构建电商领域虚拟试衣系统;
第四阶段: 大模型知识库应用开发以LangChain框架为例,构建物流行业咨询智能问答系统;
第五阶段: 大模型微调开发借助以大健康、新零售、新媒体领域构建适合当前领域大模型;
第六阶段: 以SD多模态大模型为主,搭建了文生图小程序案例;
第七阶段: 以大模型平台应用与开发为主,通过星火大模型,文心大模型等成熟大模型构建大模型行业应用。
2.视频教程
网上虽然也有很多的学习资源,但基本上都残缺不全的,这是我自己整理的大模型视频教程,上面路线图的每一个知识点,我都有配套的视频讲解。
(都打包成一块的了,不能一一展开,总共300多集)
因篇幅有限,仅展示部分资料,需要点击下方图片前往获取
3.技术文档和电子书
这里主要整理了大模型相关PDF书籍、行业报告、文档,有几百本,都是目前行业最新的。
4.LLM面试题和面经合集
这里主要整理了行业目前最新的大模型面试题和各种大厂offer面经合集。
👉学会后的收获:👈
• 基于大模型全栈工程实现(前端、后端、产品经理、设计、数据分析等),通过这门课可获得不同能力;
• 能够利用大模型解决相关实际项目需求: 大数据时代,越来越多的企业和机构需要处理海量数据,利用大模型技术可以更好地处理这些数据,提高数据分析和决策的准确性。因此,掌握大模型应用开发技能,可以让程序员更好地应对实际项目需求;
• 基于大模型和企业数据AI应用开发,实现大模型理论、掌握GPU算力、硬件、LangChain开发框架和项目实战技能, 学会Fine-tuning垂直训练大模型(数据准备、数据蒸馏、大模型部署)一站式掌握;
• 能够完成时下热门大模型垂直领域模型训练能力,提高程序员的编码能力: 大模型应用开发需要掌握机器学习算法、深度学习框架等技术,这些技术的掌握可以提高程序员的编码能力和分析能力,让程序员更加熟练地编写高质量的代码。
1.AI大模型学习路线图
2.100套AI大模型商业化落地方案
3.100集大模型视频教程
4.200本大模型PDF书籍
5.LLM面试题合集
6.AI产品经理资源合集
👉获取方式:
😝有需要的小伙伴,可以保存图片到wx扫描二v码免费领取【保证100%免费】🆓