大模型领域的发展日新月异,每天都有许多有趣的论文值得深入品读。下面是本期觉得比较有意思的论文:
1、AI玩词谜游戏:编剧式提示让大模型实力大增!
2、AI的自主"智慧寻宝"!一个检索模型的诞生
1、AI玩词谜游戏:编剧式提示让大模型实力大增!
在人工智能的创新世界里,研究者提出了一个颠覆性的思路:将大语言模型比作"方法派演员"。就像演员需要深入理解角色,大模型也可以通过精心设计的"剧本"和"表演指导"来提升解决复杂问题的能力。这项研究以《纽约时报》的连接词谜游戏为实验场景,展示了这一创新思路的惊人效果。
研究团队设计了四个关键原则:将提示工程视为编剧和导演、强调表演需要充分准备、将复杂任务分解到模仿和真实性产生相同结果的程度,以及在模仿失败时寻找替代方案。通过这种"方法演员"式的提示架构,GPT-4o的连接词谜游戏解题准确率从传统方法的27%大幅提升到86%,堪称质的飞跃。
在实验中,研究者还测试了OpenAI最新的推理模型o1-preview。当使用传统方法时,模型解决拼图的准确率为79%,而采用"方法演员"提示后,准确率提升到87%。更令人印象深刻的是,在允许多次API调用的情况下,模型甚至能够100%解决拼图,超越了人类专家的表现。
这项研究不仅仅是关于解决一个词谜游戏,更是为大语言模型的提示工程提供了一个全新的思考框架。它启示我们,通过精心设计"剧本"和"表演指导",AI可以像真正的"演员"一样,更加灵活和intelligent地理解和解决复杂任务。。
论文标题:LLMs as Method Actors: A Model for Prompt Engineering and Architecture
论文链接:https://arxiv.org/abs/2411.05778
2、AI的自主"智慧寻宝"!一个检索模型的诞生
在人工智能的知识检索领域,研究者们提出了一个令人惊叹的创新方案:Auto-RAG。这是一个能够自主进行多轮对话检索的模型,它不再依赖传统的人工设计规则,而是充分发挥大语言模型的推理能力,像"侦探"一样主动且智能地获取信息。
Auto-RAG的工作原理就像一个智能对话系统。当遇到复杂问题时,它能自主决定是否需要继续检索更多信息。模型通过多轮对话,不断调整和优化检索策略,直到获取足够的外部知识来全面回答问题。在六个不同的基准测试中,这个模型展现出了卓越的性能,尤其在开放域问答和多跳问答任务上。
与传统检索增强生成方法不同,Auto-RAG最大的创新在于它能根据问题的复杂程度动态调整检索轮数。更令人印象深刻的是,它还能用自然语言表达整个检索过程,大大提高了模型的可解释性,让用户能够直观地理解AI的思考过程。
这项研究不仅仅是技术的突破,更为我们展示了大语言模型在知识获取方面的巨大潜力。Auto-RAG为未来的智能问答系统指明了一个全新的方向:让AI不再被动接收信息,而是像人类一样主动、灵活地获取和整合知识。
论文标题:Auto-RAG: Autonomous Retrieval-Augmented Generation for Large Language Models
论文链接:https://arxiv.org/abs/2411.19443
亲爱的读者,感谢您阅读到这里。正如我们探讨的语言模型一样,每个人都有自己的潜力和价值。认清自己,要么接受平凡,要么踏踏实实从 0 到 1 去积累资源。这世上从来没有简单的、一蹴而就的成功。无论是LLM的发展还是个人的成长,都需要持续不断的努力和积累。
如何学习AI大模型?
我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。
我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。
第一阶段: 从大模型系统设计入手,讲解大模型的主要方法;
第二阶段: 在通过大模型提示词工程从Prompts角度入手更好发挥模型的作用;
第三阶段: 大模型平台应用开发借助阿里云PAI平台构建电商领域虚拟试衣系统;
第四阶段: 大模型知识库应用开发以LangChain框架为例,构建物流行业咨询智能问答系统;
第五阶段: 大模型微调开发借助以大健康、新零售、新媒体领域构建适合当前领域大模型;
第六阶段: 以SD多模态大模型为主,搭建了文生图小程序案例;
第七阶段: 以大模型平台应用与开发为主,通过星火大模型,文心大模型等成熟大模型构建大模型行业应用。
👉学会后的收获:👈
• 基于大模型全栈工程实现(前端、后端、产品经理、设计、数据分析等),通过这门课可获得不同能力;
• 能够利用大模型解决相关实际项目需求: 大数据时代,越来越多的企业和机构需要处理海量数据,利用大模型技术可以更好地处理这些数据,提高数据分析和决策的准确性。因此,掌握大模型应用开发技能,可以让程序员更好地应对实际项目需求;
• 基于大模型和企业数据AI应用开发,实现大模型理论、掌握GPU算力、硬件、LangChain开发框架和项目实战技能, 学会Fine-tuning垂直训练大模型(数据准备、数据蒸馏、大模型部署)一站式掌握;
• 能够完成时下热门大模型垂直领域模型训练能力,提高程序员的编码能力: 大模型应用开发需要掌握机器学习算法、深度学习框架等技术,这些技术的掌握可以提高程序员的编码能力和分析能力,让程序员更加熟练地编写高质量的代码。
1.AI大模型学习路线图
2.100套AI大模型商业化落地方案
3.100集大模型视频教程
4.200本大模型PDF书籍
5.LLM面试题合集
6.AI产品经理资源合集
👉获取方式:
😝有需要的小伙伴,可以保存图片到wx扫描二v码免费领取【保证100%免费】🆓