在VS Code中免费使用Deepseek-r1

人工智能革命正蓬勃发展,而 Deepseek-r1 处于这场革命的前沿。这个强大的大语言模型(LLM)能与 GPT 等顶尖人工智能模型相媲美,在推理、编码和解决问题方面表现出色,而且它可以在你自己的电脑上运行。无需再依赖昂贵的云工具。

有了 Deepseek-r1,你就拥有了一个快速、私密且经济高效的编码助手,随时在你需要时提供帮助。

在花费无数时间使用 Cursor 等工具以及其他付费人工智能助手后,我决定试试 Deepseek-r1。结果我发现了一个利器:它能与VS Code无缝免费集成,极大地提升了我的工作流程。准备好深入了解了吗?让我一步步教你如何设置。

为什么选择 Deepseek-r1?

在开始设置之前,我们先来看看作为开发者,你为什么应该考虑使用 Deepseek-r1:

  • 你可以在自己的电脑本地运行一切,无需云服务提供商。

  • 它能帮助你更快、更智能地解决复杂的编码任务。

  • 它在代码生成和调试方面表现出色。

在 VS Code 中安装 Deepseek-r1?

接下来,我们在你的 Visual Studio Code 编码环境中安装 Deepseek-r1。请按照以下步骤操作:

步骤 1:安装 Ollama

首先,你需要 Ollama,这是一个轻量级平台,可让你在本地运行大语言模型。Ollama 是你设置 Deepseek-r1 的基础,因为它能让你在电脑上轻松管理和运行 Deepseek-r1。

要安装 Ollama,前往 Ollama 官方网站,下载适合你操作系统的版本。然后按照他们的安装说明进行安装并启动。

在线下载 Ollama

步骤 2:下载 Deepseek-r1

安装好 Ollama 后,就该把 Deepseek-r1 引入你的编码环境了。打开终端并运行以下命令:

ollama pull deepseek-r1  

安装可能需要一些时间,你得有点耐心。

上述命令会将 Deepseek-r1 模型下载到你的本地电脑。

在本地电脑安装 Deepseek-r1

下载完成后,用一个简单的查询进行测试,确保一切正常。使用以下命令运行 deepseek-r1:

ollama run deepseek-r1  

然后添加你的测试提示:

在 VS 插件中安装 Continue.dev

如果你看到了回复,那就大功告成啦!Deepseek-r1 准备就绪。

ollama官网有各种大小的模型可选,默认是7b:

步骤 3:安装 Continue.dev 插件

现在,我们把 Deepseek-r1 引入 Visual Studio Code。为此,我们将使用 Continue.dev,这是一个很棒的插件,它能将 VS Code 与 Deepseek-r1 这样的大语言模型连接起来。这个插件将作为你的 VS Code 和 Ollama 之间的桥梁,让你能在编码环境中直接与 Deepseek-r1 交互。要安装 Continue.dev 插件,请按以下步骤操作:

  1. 打开 VS Code,进入插件市场。

  2. 搜索 Continue.dev 并点击安装。

在 VS 插件中安装 Continue.dev

步骤 4:在 Continue.dev 中配置 Deepseek-r1

安装好 Continue.dev 后,将它与 Deepseek-r1 连接起来。按照以下步骤进行配置:

  • 点击 VS Code 活动栏中的图标,打开 Continue.dev 界面。

  • 在聊天窗口左下角找到模型选择按钮。

  • 点击该按钮,选择 Ollama 作为平台,然后从可用模型列表中选择 Deepseek-r1。

在 VS Code 中配置 Deepseek

OK!现在已经准备好在编码工作流程中利用 Deepseek-r1 的强大功能了。

用 Deepseek-r1 能做什么?

一切设置好后,在你的编码环境中,Deepseek-r1 的用途可谓无穷无尽:

  • 你打字时,它会给出智能的、上下文感知的建议。

  • 你可以突出显示一段代码块,让 Deepseek-r1 对其进行优化或重写。

  • 如果你遇到错误卡住了,Deepseek-r1 会帮你排查故障。

  • 你可以选择任何代码片段,获取它工作原理的详细解析。

这是 Deepseek-r1 在你的 Visual Studio Code 中工作的快速演示。

最有趣的是:

  • 你无需订阅或支付隐藏费用,就能获得免费且强大的人工智能帮助。

  • 一切都在本地运行,所以你的代码会留在你的电脑上。

  • 你可以根据自己的特定需求定制 Deepseek-r1 的行为。

最后的思考

将 Deepseek-r1 集成到 Visual Studio Code 对我的工作效率来有极大的提升。它快速、可靠且功能极其多样,而无需花费一分钱。无论你是经验丰富的开发者还是刚刚起步,这种设置都值得一试。

那么,你还在等什么呢?试试 Deepseek-r1,今天就体验未来的编码方式。

AI大模型学习福利

作为一名热心肠的互联网老兵,我决定把宝贵的AI知识分享给大家。 至于能学习到多少就看你的学习毅力和能力了 。我已将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。

在这里插入图片描述

大模型&AI产品经理如何学习

求大家的点赞和收藏,我花2万买的大模型学习资料免费共享给你们,来看看有哪些东西。

1.学习路线图

在这里插入图片描述

第一阶段: 从大模型系统设计入手,讲解大模型的主要方法;

第二阶段: 在通过大模型提示词工程从Prompts角度入手更好发挥模型的作用;

第三阶段: 大模型平台应用开发借助阿里云PAI平台构建电商领域虚拟试衣系统;

第四阶段: 大模型知识库应用开发以LangChain框架为例,构建物流行业咨询智能问答系统;

第五阶段: 大模型微调开发借助以大健康、新零售、新媒体领域构建适合当前领域大模型;

第六阶段: 以SD多模态大模型为主,搭建了文生图小程序案例;

第七阶段: 以大模型平台应用与开发为主,通过星火大模型,文心大模型等成熟大模型构建大模型行业应用。

2.视频教程

网上虽然也有很多的学习资源,但基本上都残缺不全的,这是我自己整理的大模型视频教程,上面路线图的每一个知识点,我都有配套的视频讲解。

在这里插入图片描述

在这里插入图片描述

(都打包成一块的了,不能一一展开,总共300多集)

因篇幅有限,仅展示部分资料,需要点击下方图片前往获取

3.技术文档和电子书

这里主要整理了大模型相关PDF书籍、行业报告、文档,有几百本,都是目前行业最新的。
在这里插入图片描述

4.LLM面试题和面经合集

这里主要整理了行业目前最新的大模型面试题和各种大厂offer面经合集。
在这里插入图片描述

👉学会后的收获:👈
• 基于大模型全栈工程实现(前端、后端、产品经理、设计、数据分析等),通过这门课可获得不同能力;

• 能够利用大模型解决相关实际项目需求: 大数据时代,越来越多的企业和机构需要处理海量数据,利用大模型技术可以更好地处理这些数据,提高数据分析和决策的准确性。因此,掌握大模型应用开发技能,可以让程序员更好地应对实际项目需求;

• 基于大模型和企业数据AI应用开发,实现大模型理论、掌握GPU算力、硬件、LangChain开发框架和项目实战技能, 学会Fine-tuning垂直训练大模型(数据准备、数据蒸馏、大模型部署)一站式掌握;

• 能够完成时下热门大模型垂直领域模型训练能力,提高程序员的编码能力: 大模型应用开发需要掌握机器学习算法、深度学习框架等技术,这些技术的掌握可以提高程序员的编码能力和分析能力,让程序员更加熟练地编写高质量的代码。
在这里插入图片描述

1.AI大模型学习路线图
2.100套AI大模型商业化落地方案
3.100集大模型视频教程
4.200本大模型PDF书籍
5.LLM面试题合集
6.AI产品经理资源合集

👉获取方式:
😝有需要的小伙伴,可以保存图片到wx扫描二v码免费领取【保证100%免费】🆓

在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

程序员辣条

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值