手把手教你用LLaMA-Factory微调Qwen3大模型

思路: 在AutoDL云服务器上安装LLaMA-Factory环境,然后微调Qwen3-4B大模型

一、环境准备

1)购买AutoDL云主机,3090显卡的即可(如果本地有GPU机器,请用自己的),我购买AutoDL时,选择了PyTorch

2)安装Anaconda(AutoDL上已默认安装miniconda3)

Anacoda官网:https://www.anaconda.com/

根据你自己的系统下载对应版本

安装完成后,打开终端(Linux/macOS)或Anaconda Prompt(Windows),输入以下命令创建一个新环境:

(AutoDL上需要做以下操作)

 
conda create -n llama_factory python=3.10 conda activate llama_factory 

3)安装Git(AutoDL已安装)

  • Linux:在终端输入:

    sudo apt-get install git
  • Windows:下载并安装Git for Windows

  • macOS:在终端输入:

    brew install git(需先安装Homebrew)

4)安装cuda(AutoDL已安装)

参考: https://help.aliyun.com/zh/egs/user-guide/install-a-gpu-driver-on-a-gpu-accelerated-compute-optimized-linux-instance

二、下载LLaMA-Factory

需要从GitHub下载,使用git命令下载:

git clone https://github.com/hiyouga/LLaMA-Factory.gitcd LLaMA-Factory

三、安装依赖

在LLaMA-Factory目录下安装所需的Python包

pip install -e .[metrics]

如果使用GPU,确保安装支持CUDA的PyTorch:

pip install torch torchvision torchaudio --index-url https://download.pytorch.org/whl/cu118

说明: 根据您的CUDA版本调整cu118,如11.7用cu117,如果你使用的是AutoDL,CUDA版本应该是128

四、下载Qwen3-4b大模型

在modelscope社区下载,安装魔搭(modelscope)模块

pip install modelscope

下载模型​​​​​​​

mkdir -p /models/modelscope download --model Qwen/Qwen3-4B --local_dir /models/Qwen3-4B

五、准备数据集(alpaca格式)

步骤略,可以参考前面章节教你如何10分钟内批量制作上万条大模型微调数据集制作自己的数据集,然后将数据集文件放到LLaMA-Factory/data目录,例如my_data.json,然后编辑data/dataset_info.json,添加:​​​​​​​

"my_dataset": {    "file_name": "alpaca_zh_demo.json"  }

说明:alpaca_zh_demo.json是llama factory内置的一个测试数据集

六、微调前的测试

微调之前可以先加载初始模型做推理测试​​​​​​​

CUDA_VISIBLE_DEVICES=0 llamafactory-cli webchat \  --model_name_or_path /models/Qwen3-4B \  --template qwen

它会监听7860端口,如果使用AutoDL,还需要配置自定义服务:

1)首先要实名认证

2)自定义服务

控制台 --> 容器实例 --> 快捷工具

七、启动微调

微调之前,先把之前的llamafactory-cli命令结束掉,然后执行下面命令,将webui打开,监听7860端口:

llamafactory-cli webui

浏览器访问 http://ip:7860, AutoDL需要做自定义服务

八、模型推理与测试

微调后的模型可以用WebUI测试:​​​​​​​

CUDA_VISIBLE_DEVICES=0 llamafactory-cli webchat \  --model_name_or_path /models/Qwen3-4B \  --adapter_name_or_path saves/Qwen3-4B-Instruct/lora/my_finetune \  --template qwen

浏览器访问: http://localhost:7860

如果web方式访问不方便,也可以终端形式:​​​​​​​

CUDA_VISIBLE_DEVICES=0 llamafactory-cli chat \  --model_name_or_path /models/Qwen3-4B \  --adapter_name_or_path saves/Qwen3-4B-Instruct/lora/my_finetune \  --template qwen

九、导出模型

如果需要分享模型,导出为Hugging Face格式:​​​​​​​

llamafactory-cli export \  --model_name_or_path /models/Qwen3-4B \  --adapter_name_or_path saves/Qwen3-4B-Instruct/lora/my_finetune \  --template qwen \  --finetuning_type lora \  --export_dir /models/Qwen3-4B-Aminglinux

 一、大模型风口已至:月薪30K+的AI岗正在批量诞生

2025年大模型应用呈现爆发式增长,根据工信部最新数据:

国内大模型相关岗位缺口达47万

初级工程师平均薪资28K

70%企业存在"能用模型不会调优"的痛点

真实案例:某二本机械专业学员,通过4个月系统学习,成功拿到某AI医疗公司大模型优化岗offer,薪资直接翻3倍!

二、如何学习大模型 AI ?


🔥AI取代的不是人类,而是不会用AI的人!麦肯锡最新报告显示:掌握AI工具的从业者生产效率提升47%,薪资溢价达34%!🚀

由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。

但是具体到个人,只能说是:

“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。

这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。

我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。

我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。

1️⃣ 提示词工程:把ChatGPT从玩具变成生产工具
2️⃣ RAG系统:让大模型精准输出行业知识
3️⃣ 智能体开发:用AutoGPT打造24小时数字员工

📦熬了三个大夜整理的《AI进化工具包》送你:
✔️ 大厂内部LLM落地手册(含58个真实案例)
✔️ 提示词设计模板库(覆盖12大应用场景)
✔️ 私藏学习路径图(0基础到项目实战仅需90天)

 

第一阶段(10天):初阶应用

该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。

*   大模型 AI 能干什么?
*   大模型是怎样获得「智能」的?
*   用好 AI 的核心心法
*   大模型应用业务架构
*   大模型应用技术架构
*   代码示例:向 GPT-3.5 灌入新知识
*   提示工程的意义和核心思想
*   Prompt 典型构成
*   指令调优方法论
*   思维链和思维树
*   Prompt 攻击和防范
*   …

第二阶段(30天):高阶应用

该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。

*   为什么要做 RAG
*   搭建一个简单的 ChatPDF
*   检索的基础概念
*   什么是向量表示(Embeddings)
*   向量数据库与向量检索
*   基于向量检索的 RAG
*   搭建 RAG 系统的扩展知识
*   混合检索与 RAG-Fusion 简介
*   向量模型本地部署
*   …

第三阶段(30天):模型训练

恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。

到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?

*   为什么要做 RAG
*   什么是模型
*   什么是模型训练
*   求解器 & 损失函数简介
*   小实验2:手写一个简单的神经网络并训练它
*   什么是训练/预训练/微调/轻量化微调
*   Transformer结构简介
*   轻量化微调
*   实验数据集的构建
*   …

第四阶段(20天):商业闭环

对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。

*   硬件选型
*   带你了解全球大模型
*   使用国产大模型服务
*   搭建 OpenAI 代理
*   热身:基于阿里云 PAI 部署 Stable Diffusion
*   在本地计算机运行大模型
*   大模型的私有化部署
*   基于 vLLM 部署大模型
*   案例:如何优雅地在阿里云私有部署开源大模型
*   部署一套开源 LLM 项目
*   内容安全
*   互联网信息服务算法备案
*   …

学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。

如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。

这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费】

### 使用 LLaMA-FactoryQwen 小模型进行微调 #### 准备工作环境 切换到 `llama-factory` 的工作目录,以便执行后续命令。这一步骤确保所有操作都在正确的路径下完成。 ```bash cd \root\LLaMA-Factory ``` #### 配置训练参数 为了启动微调过程,需要指定 GPU 设备以及配置文件的位置。这里假设使用的是具有多个 GPU 的机器,并指定了具体的 YAML 文件作为配置输入。 ```bash CUDA_VISIBLE_DEVICES=0,1,2,3,4,5,6,7 llamafactory-cli train /path/to/your/config_file.yaml ``` 其中 `/path/to/your/config_file.yaml` 应替换为实际使用的配置文件路径,例如 `examples/train_lora/qwen2vl_lora_sft_my20241112.yaml`[^2]。 #### 创建自定义数据集 对于特定应用场景下的微调,创建一个包含目标领域样本的数据集至关重要。如果希望使 Qwen 模型能够更准确地识别某些类别,则应准备相应的标注图像集合用于训练。比如,在案例中提到的将一张手帕误标为裙子的情况,可以构建类似的带有误导性的标记数据来进行针对性调整[^3]。 #### 执行微调流程 一旦准备工作就绪,就可以运行上述命令开始微调过程。此阶段会基于预设的学习率和其他超参数自动迭代优化权重直到收敛或达到最大轮次限制为止。 #### 测试与验证效果 当微调完成后,保存下来的 checkpoint 即代表了经过改进后的模型版本。此时可以通过加载该 checkpoint 并进入聊天界面来评估其性能表现: - 加载刚刚生成的新版模型; - 进入 chat 页面; - 上传待测图片并询问对象是什么; 通过这种方式可以直接观察到模型是否按照预期改变了原有的分类行为模式。 #### 后续处理 考虑到原生 Qwen 模型本身已经具备较高的精度水平(约90%),但在引入额外映射机制之后整体准确度有所下降至大约80%,因此直接针对所需标签空间实施细粒度定制化修改不失为一种有效策略,从而减少不必要的转换环节所带来的误差累积问题。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

程序员辣条

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值