【无标题】

python代码内存监控库



前言

为什么要监控内存消耗?

  1. 防止内存泄漏:内存泄漏可能导致程序随着时间的推移消耗更多的内存,最终导致崩溃或系统减速。

  2. 优化资源使用情况:通过了解应用程序使用的内存量,可以对其进行优化,使其运行更高​​效,从而减少系统资源的压力。

  3. 确保稳定性:定期监控有助于确保应用程序保持稳定并持续运行,不会因内存问题而出现意外中断。

  4. 容量规划:了解应用程序的内存使用模式有助于规划扩展,尤其是在资源有限的环境中。


一、psutil

psutil是一个跨平台库,主要用于获取Python中运行的进程和系统利用率(包括CPU、内存、磁盘、网络等)的信息

二、使用步骤

1.安装

pip install psutil

2.使用方法

代码如下(示例):

# 获取CPU使用率(以百分比表示)  
cpu_usage = psutil.cpu_percent(interval=1)  
print(f"CPU使用率: {cpu_usage}%")  
  
# 获取内存使用情况  
mem = psutil.virtual_memory()  
print(f"内存总量: {mem.total / (1024 ** 3):.2f} GB")  
print(f"已用内存: {mem.used / (1024 ** 3):.2f} GB")  
print(f"内存使用率: {mem.percent}%")  
  
# 获取磁盘使用情况(这里以第一个磁盘分区为例)  
disk_usage = psutil.disk_usage('/')  
print(f"磁盘总量: {disk_usage.total / (1024 ** 3):.2f} GB")  
print(f"已用磁盘: {disk_usage.used / (1024 ** 3):.2f} GB")  
print(f"磁盘使用率: {disk_usage.percent}%")

3.psutil的其它用法

1.获取CPU的物理和逻辑数量:
# 获取CPU的逻辑数量  
print(psutil.cpu_count())  
# 获取CPU的物理核心数量  
print(psutil.cpu_count(logical=False))
2.获取进程信息:
# 获取所有进程ID  
pids = psutil.pids()  
print(pids)  
  
# 获取特定进程信息(例如PID为1的进程)  
process = psutil.Process(1)  
print(process.name())  # 进程名  
print(process.memory_info())  # 进程内存信息
3.网络监控:
# 获取所有网络接口的详细信息  
net_io_counters = psutil.net_io_counters(pernic=True)  
for nic, stats in net_io_counters.items():  
    print(f"Interface {nic}:")  
    print(f"Bytes sent: {stats.bytes_sent}")  
    print(f"Bytes received: {stats.bytes_recv}")

三、与其它库组合用法

psutil经常与rich库结合使用,以在终端中创建美观的输出。例如,可以使用rich的表格来展示psutil获取的进程信息:

import rich
from rich import table
import psutil

# 获取所有进程
processes = [psutil.Process(pid) for pid in psutil.pids()]
# 创建一个表格
t = table.Table(show_header=True, header_style="bold magenta")
t.add_column("PID", style="dim")
t.add_column("Name", justify="right")
t.add_column("CPU%", justify="right")
t.add_column("Memory%", justify="right")

# 填充表格
for process in processes:
    try:
        t.add_row(
            str(process.pid),
            process.name(),
            f"{process.cpu_percent()}%",
            f"{process.memory_percent()}%"
        )
    except (psutil.NoSuchProcess, psutil.AccessDenied, psutil.ZombieProcess):
        pass

    # 打印表格
rich.print(t)

四、memory_profiler

memory_profiler是一个Python库,它用于分析代码执行过程中每行代码的内存使用情况,从而帮助识别潜在的内存泄漏或内存使用过多的问题

1.使用方法

from memory_profiler import profile


@profile
def my_function():
    a = [1] * (10 ** 6)
    b = [2] * (2 * 10 ** 7)
    del b
    return a


if __name__ == '__main__':
    my_function()

通过终端运行

python -m  memory_profiler demo.py

结果:
在这里插入图片描述

总结

psutil与memory_profiler是两款强大的Python库,用于监控和管理系统资源。psutil提供了丰富的系统信息,包括CPU、内存、磁盘等,而memory_profiler则专注于分析Python程序的内存使用情况。两者结合使用,可帮助开发者更有效地优化资源消耗和识别内存问题。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

小航SDB

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值