python代码内存监控库
文章目录
前言
为什么要监控内存消耗?
-
防止内存泄漏:内存泄漏可能导致程序随着时间的推移消耗更多的内存,最终导致崩溃或系统减速。
-
优化资源使用情况:通过了解应用程序使用的内存量,可以对其进行优化,使其运行更高效,从而减少系统资源的压力。
-
确保稳定性:定期监控有助于确保应用程序保持稳定并持续运行,不会因内存问题而出现意外中断。
-
容量规划:了解应用程序的内存使用模式有助于规划扩展,尤其是在资源有限的环境中。
一、psutil
psutil是一个跨平台库,主要用于获取Python中运行的进程和系统利用率(包括CPU、内存、磁盘、网络等)的信息
二、使用步骤
1.安装
pip install psutil
2.使用方法
代码如下(示例):
# 获取CPU使用率(以百分比表示)
cpu_usage = psutil.cpu_percent(interval=1)
print(f"CPU使用率: {cpu_usage}%")
# 获取内存使用情况
mem = psutil.virtual_memory()
print(f"内存总量: {mem.total / (1024 ** 3):.2f} GB")
print(f"已用内存: {mem.used / (1024 ** 3):.2f} GB")
print(f"内存使用率: {mem.percent}%")
# 获取磁盘使用情况(这里以第一个磁盘分区为例)
disk_usage = psutil.disk_usage('/')
print(f"磁盘总量: {disk_usage.total / (1024 ** 3):.2f} GB")
print(f"已用磁盘: {disk_usage.used / (1024 ** 3):.2f} GB")
print(f"磁盘使用率: {disk_usage.percent}%")
3.psutil的其它用法
1.获取CPU的物理和逻辑数量:
# 获取CPU的逻辑数量
print(psutil.cpu_count())
# 获取CPU的物理核心数量
print(psutil.cpu_count(logical=False))
2.获取进程信息:
# 获取所有进程ID
pids = psutil.pids()
print(pids)
# 获取特定进程信息(例如PID为1的进程)
process = psutil.Process(1)
print(process.name()) # 进程名
print(process.memory_info()) # 进程内存信息
3.网络监控:
# 获取所有网络接口的详细信息
net_io_counters = psutil.net_io_counters(pernic=True)
for nic, stats in net_io_counters.items():
print(f"Interface {nic}:")
print(f"Bytes sent: {stats.bytes_sent}")
print(f"Bytes received: {stats.bytes_recv}")
三、与其它库组合用法
psutil经常与rich库结合使用,以在终端中创建美观的输出。例如,可以使用rich的表格来展示psutil获取的进程信息:
import rich
from rich import table
import psutil
# 获取所有进程
processes = [psutil.Process(pid) for pid in psutil.pids()]
# 创建一个表格
t = table.Table(show_header=True, header_style="bold magenta")
t.add_column("PID", style="dim")
t.add_column("Name", justify="right")
t.add_column("CPU%", justify="right")
t.add_column("Memory%", justify="right")
# 填充表格
for process in processes:
try:
t.add_row(
str(process.pid),
process.name(),
f"{process.cpu_percent()}%",
f"{process.memory_percent()}%"
)
except (psutil.NoSuchProcess, psutil.AccessDenied, psutil.ZombieProcess):
pass
# 打印表格
rich.print(t)
四、memory_profiler
memory_profiler是一个Python库,它用于分析代码执行过程中每行代码的内存使用情况,从而帮助识别潜在的内存泄漏或内存使用过多的问题
1.使用方法
from memory_profiler import profile
@profile
def my_function():
a = [1] * (10 ** 6)
b = [2] * (2 * 10 ** 7)
del b
return a
if __name__ == '__main__':
my_function()
通过终端运行
python -m memory_profiler demo.py
结果:
总结
psutil与memory_profiler是两款强大的Python库,用于监控和管理系统资源。psutil提供了丰富的系统信息,包括CPU、内存、磁盘等,而memory_profiler则专注于分析Python程序的内存使用情况。两者结合使用,可帮助开发者更有效地优化资源消耗和识别内存问题。