傅里叶变换(基础&重点)

本文介绍了傅里叶变换的起源,包括其在解决热传导方程中的应用,扩展至傅里叶级数的求解,以及如何从周期函数推广到非周期函数的一维和二维情况。特别关注了离散傅里叶变换的概念及其与连续傅里叶变换的关系。
摘要由CSDN通过智能技术生成

傅里叶变换最初用于求解热传导方程

01傅里叶极数

下述分解需要满足狄利赫利三条件,保证X(t)收敛性

若有:

X(t)=B_{0}+ \sum_{1}^{+\infty }B_{k}cos(k\omega _{0}t)+\sum_{1}^{+\infty }C_{k}sin(k\omega _{0}t)

T_{0}= \frac{2\pi}{\omega_{0}}

T(X(t))=T_{0}

则:
B_{0}=\frac{1}{T_{0}}\int_{0}^{T_{0}}X(t)dt

B_{k}=\frac{2}{T_{0}}\int_{0}^{T_{0}}X(t)cos(k\omega _{0}t)dt

C_{k}=\frac{2}{T_{0}}\int_{0}^{T_{0}}X(t)sin(k\omega _{0}t)dt

复数表达式,j为虚数单位

X(t)=\sum_{-\infty}^{+\infty }a_{k}e^{jk\omega_{0} t}

a_{k}=\frac{1}{T_{0}}\int_{0}^{T_{0}}X(t)e^{-jk\omega_{0} t}dt

T_{0}= \frac{2\pi}{\omega_{0}}

关系,推导使用了欧拉公式实现到虚部的转换

B_{0}=a_{0}(k=0)

B_{k}=a_{-k}+a_{k}(k\neq 0)

C_{k}=j(a_{k}-a_{-k})

例如:

求某个周期方波的傅里叶级数

02傅里叶变换

将傅里叶级数推广到非周期函数

一维:

傅里叶变换

X(j\omega )=\int_{-\infty}^{+\infty}x(t)e^{-j\omega t}dt

傅里叶变换逆变换

x(t)=\frac{1}{2\pi }\int_{-\infty}^{+\infty}X(j\omega )e^{j\omega t}d\omega

二维:

03离散傅里叶变换

傅里叶变换

X(e^{j\omega })=\sum_{-\infty}^{+\infty}x[n]e^{-j\omega n} 是ω以2pi为周期的​​​​​​​函数

逆变换

x[n]=\frac{1}{2\pi}\int _{2\pi}X(e^{j\omega })e^{j\omega n}d\omega

  • 2
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 1
    评论
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值