数据结构与算法:时间复杂度和空间复杂度

1.算法效率

算法效率分析分为两种:第一种是时间效率,第二种是空间效率。时间效率被称为时间复杂度,而空间效率被称作空间复杂度。 时间复杂度主要衡量的是一个算法的运行速度,而空间复杂度主要衡量一个算法所需要的额外空间,在计算机发展的早期,计算机的存储容量很小。所以对空间复杂度很是在乎。但是经过计算机行业的迅速发展,计算机的存储容量已经达到了很高的程度。所以我们如今已经不需要再特别关注一个算法的空间复杂度。

2.时间复杂度

1.时间复杂度的概念

时间复杂度的定义:在计算机科学中,算法的时间复杂度是一个函数,它定量描述了该算法的运行时间。一个算法执行所耗费的时间,从理论上说,是不能算出来的,只有你把你的程序放在机器上跑起来,才能知道。但是我们需要每个算法都上机测试吗?是可以都上机测试,但是这很麻烦,所以才有了时间复杂度这个分析方式。一个算法所花费的时间与其中语句的执行次数成正比例,算法中的基本操作的执行次数,为算法的时间复杂度

2.大O的渐进表示法

实际中我们计算时间复杂度时,我们其实并不一定要计算精确的执行次数,而只需要大概执行次数,那么这里我们使用大O的渐进表示法
大O符号(Big O notation):是用于描述函数渐进行为的数学符号。
推导大O阶方法:

1、用常数1取代运行时间中的所有加法常数。

2、在修改后的运行次数函数中,只保留最高阶项。

3、如果最高阶项存在且不是1,则去除与这个项目相乘的常数。得到的结果就是大O阶。

举例:

// 请计算一下func1基本操作执行了多少次?
void func1(int N){
	int count = 0;
	
   	for (int i = 0; i < N ; i++) {
      	for (int j = 0; j < N ; j++) {
           	count++;
       	}
   	}//代码块1
   	
   	for (int k = 0; k < 2 * N ; k++) {
       	count++;
   	}//代码块2
   	
   	int M = 10;
   	while ((M--) > 0) {
       	count++;
   	}//代码块3
   
  	System.out.println(count);
}

代码块1中


for (int i = 0; i < N ; i++) {
      	for (int j = 0; j < N ; j++) {
           	count++;
       	}
   	}

执行的次数为 n*n。

代码块2中

for (int k = 0; k < 2 * N ; k++) {
       	count++;
   	}

执行的次数为 2*n。

代码块三中

int M = 10;
   	while ((M--) > 0) {
       	count++;
   	}

执行次数为 10.

所以 F(n) = n^2 + 2*n + 10.

使用大O的渐进表示法以后,Func1的时间复杂度为:O( n^2 )
另外有些算法的时间复杂度存在最好、平均和最坏情况:

最坏情况:任意输入规模的最大运行次数(上界).

平均情况:任意输入规模的期望运行次数.

最好情况:任意输入规模的最小运行次数(下界).

例如:在一个长度为N数组中搜索一个数据x.

最好情况:1次找到.

最坏情况:N次找到.

平均情况:N/2次找到.

在实际中一般情况关注的是算法的最坏运行情况,所以数组中搜索数据时间复杂度为O(N).

3.常见的时间复杂度计算举例

实例1

// 计算func2的时间复杂度?
void func2(int N) {
	int count = 0;
	for (int k = 0; k < 2 * N ; k++) {
 		count++;
	}
	int M = 10;
	while ((M--) > 0) {
  		count++;
	}
	System.out.println(count);
}

实例1基本操作执行了2N+10次,通过推导大O阶方法知道,时间复杂度为 O(N).

实例2

// 计算func3的时间复杂度?
void func3(int N, int M) {
	int count = 0;
	for (int k = 0; k < M; k++) {
   		count++;
	}
	for (int k = 0; k < N ; k++) {
   		count++;
	}
	System.out.println(count);
}

实例2基本操作执行了M+N次,有两个未知数M和N,时间复杂度为 O(N+M).

实例3

// 计算func4的时间复杂度?
void func4(int N) {
	int count = 0;
	for (int k = 0; k < 100; k++) {
   		count++;
	}
	System.out.println(count);
}

实例3基本操作执行了100次,通过推导大O阶方法,时间复杂度为 O(1).

实例4

// 计算bubbleSort的时间复杂度?
void bubbleSort(int[] array) {
   	for (int end = array.length; end > 0; end--) {
       	boolean sorted = true;
       	for (int i = 1; i < end; i++) {
           	if (array[n-1] > array[i]) {
          		Swap(array, i - 1, i);
               	sorted = false;
           	}
       	}
       	if (sorted == true) {
           	break;
       	}
   	}
}

实例4基本操作执行最好N次,最坏执行了(N*(N-1))/2次,通过推导大O阶方法+时间复杂度一般看最坏,时间复杂度为 O(N^2).

实例5

// 计算binarySearch的时间复杂度?
int binarySearch(int[] array, int value) {
  	int begin = 0;
   	int end = array.length - 1;
   	while (begin <= end) {
       	int mid = begin + ((end-begin) / 2);
       	if (array[mid] < value)
           	begin = mid + 1;
       	else if (array[mid] > value)
           	end = mid - 1;
       	else
           	return mid;
   	}
   	return -1;
}

这就是二分查找算法的时间复杂度。

上述函数就相当于给定一个包含有N个元素的有序数组A[N],我们要使用二分法知道元素x是否存在这个数组中。

假设找到x我们最多需要的步骤是f(N)。

第一步,我们将A[N]一分为二,根据有序数组的特性,通过比较x与标的元素的大小,知道了x落入其中一个子数组B[N/2]。此时问题就变成了

给定一个包含有N/2个元素的有序数组B[N/2],我们要使用二分法知道元素x是否存在这个数组中。

此时我们进行了一次对比,那么f(n)可以写成

f(N) = 1 + f(N/2)

重复以上步骤,可以得到

f(N) =  1 + f(N/2)
     =  1 +1 + f(N/4)=  2 + f(n/4)

以此类推,重复k次之后

f(N) = k + f(N/(2^k))

如果以上步骤重复了m次之后,数组只余一个元素无法再分,计算结束。此时

f(N) = m + f(1) = m + 1
N/(2^m) = 1

于是

N = 2^m
m = log2(N)

也就是说,最多经历log2(N)+1次步骤之后,我们获得查找的结果。所以二分查找算法的时间复杂度为O(logN)

实例6

// 计算阶乘递归factorial的时间复杂度?
long factorial(int N) {
 	return N < 2 ? N : factorial(N-1) * N;
}

实例6通过计算分析发现基本操作递归了N次,时间复杂度为O(N)。

实例7

// 计算斐波那契递归fibonacci的时间复杂度?
int fibonacci(int N) {
 	return N < 2 ? N : fibonacci(N-1)+fibonacci(N-2);
}

画图:以F(6)为例:斐波那契数列到第六个数停止
每个节点运行都会开辟空间,使用时间
在这里插入图片描述

为了方便计算,把第五层的f(2)和f(1)放在第四层最右边,不会影响时间复杂度计算

在这里插入图片描述

第n层节点个数:2^n 个.
前n层节点个数:1+2+4+……+2^n = (2 ^ n) - 1.
F(6)有4层,推理:F(n) 有 n-2层.
则F(n)一共有节点数 (2 ^ (n-2)) - 1 = ((2 ^n)/4)-1.
计算时间复杂度规则:不看常数,不看系数,只看最高次数项.
因此:O(F(n)) = O(2^n).

3.空间复杂度

空间复杂度是对一个算法在运行过程中临时占用存储空间大小的量度 。空间复杂度不是程序占用了多少bytes的空间,因为这个也没太大意义,所以空间复杂度算的是变量的个数。空间复杂度计算规则基本跟实践复杂度类似,也使用大O渐进表示法

1.常见的空间复杂度计算举例

实例1

// 计算bubbleSort的空间复杂度?
void bubbleSort(int[] array) {
	for (int end = array.length; end > 0; end--) {
     	boolean sorted = true;
     	for (int i = 1; i < end; i++) {
         	if (array[i - 1] > array[i]) {
             	Swap(array, i - 1, i);
             	sorted = false;
         	}
     	}
     	if (sorted == true) {
         	break;
     	}
 	}
}

实例1使用了常数个额外空间,所以空间复杂度为 O(1)。

实例2

// 计算fibonacci的空间复杂度?
int[] fibonacci(int n) {
	long[] fibArray = new long[n + 1];
	fibArray[0] = 0;
	fibArray[1] = 1;
	for (int i = 2; i <= n ; i++) {
  		fibArray[i] = fibArray[i - 1] + fibArray [i - 2];
 	}
	return fibArray;
}

实例2动态开辟了N个空间,空间复杂度为 O(N)。

实例3

// 计算阶乘递归Factorial的时间复杂度?
long factorial(int N) {
 	return N < 2 ? N : factorial(N-1)*N;

实例3递归调用了N次,开辟了N个栈帧,每个栈帧使用了常数个空间。空间复杂度为O(N)。

  • 7
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 6
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 6
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值