第 382 场周赛 解题报告 | 珂学家 | 贪心构造

本文介绍了四个编程问题的解决方案:按键变更次数统计、子集中元素最大数量计算、Alice和Bob的鲜花游戏策略以及在给定操作次数下最小化剩余元素或值的问题。每个问题都涉及到不同的算法技巧,如模拟、记忆化搜索、找规律和贪心构造。
摘要由CSDN通过智能技术生成

前言

在这里插入图片描述


整体评价

前三题还是蛮简单的,但是T4真的难,难在思维


T1. 按键变更的次数

思路: 模拟

可以先归一化,即全部小写

class Solution {
    public int countKeyChanges(String s) {
        char[] str = s.toLowerCase().toCharArray();
        int res = 0;
        for (int i = 1; i < str.length; i++) {
            if (str[i] != str[i - 1]) res++;
        }
        return res;
    }
}

T2. 子集中元素的最大数量

思路: 记忆化搜索

需要特判1,比较特殊

class Solution {
    Map<Long, Integer> hash = new HashMap<>();
    Map<Long, Integer> memo = new HashMap<>();

    int dfs(long v) {            
        if (memo.containsKey(v)) {
            return memo.get(v);
        }

        int cnt = hash.getOrDefault(v, 0);
        if (cnt == 0) {
            memo.put(v, 0);
            return 0;
        }
        if (cnt == 1) {
            memo.put(v, 1);
            return 1;
        }
        int r = dfs(v * v) + 1;
        memo.put(v, r);

        return r;
    }

    public int maximumLength(int[] nums) {
        for (int v: nums) {
            hash.merge((long)v, 1, Integer::sum);
        }
        int res = 0;
        for (int v: nums) {
            if (v != 1) {
                int tmp = dfs(v);
                res = Math.max(res, tmp * 2 - 1);
            } else {
                int tmp = hash.getOrDefault(1l, 0);
                if (tmp % 2 == 0) tmp--;

                res = Math.max(res, tmp);

            }
        }
        return res;
    }
}

T3. Alice 和 Bob 玩鲜花游戏

思路: 找规律

因为每次只能取1个,所以只要

x + y 为奇数 , 则必赢 x+y为奇数, 则必赢 x+y为奇数,则必赢

n / / 2 ∗ ( m + 1 ) / / 2 + ( n + 1 ) / / 2 ∗ m / / 2 n//2 * (m + 1) // 2 + (n+1)//2 * m // 2 n//2(m+1)//2+(n+1)//2m//2

class Solution {
    public long flowerGame(int n, int m) {
        long n1 = n, n2 = m;
        return (n1/2) * ((n2 + 1)/2) + ((n1+1)/2) * (n2/2);
    }
}

T4. 给定操作次数内使剩余元素的或值最小

思路: 贪心构造

很怕这类题,就但是思维构造题

就是从构造出发,贪心消去更多的高位,其次消去更多的1

这边有个技巧,叫做试填法

中间的那个分段构造贪心,也是最难的点,往往很容易想到从高位到低位的构造。

整体时间复杂度为 O ( 30 n ) O(30n) O(30n)

class Solution {
    
    public int minOrAfterOperations(int[] nums, int k) {
        int mask = (1 << 30) - 1;
        int ans = mask;
        for (int i = 29; i >= 0; i--) {
            int cur = ans - (1 << i);
            int s = mask;
            
            int cnt = nums.length;
            for (int v: nums) {
                s &= (v & ~cur);
                if (s == 0) {
                    cnt--;
                    s = mask;
                }
            }
            if (cnt <= k) {
                ans = cur;
            }
        }
        return ans;
    }
    
}

写在最后

在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值