CCF CAT- 全国算法精英大赛(2024第二场)往届真题练习 3 | 珂学家

前言

这是2024年第一场CCF初赛的题, 其实整场比赛,感觉不是特别难,就是码量大,偏模拟和数学。

对于A题,摩斯密码,很容易抄错,我一直在想有什么好办法可以规避它,是真的苦涩。

在这里插入图片描述


真题


摩斯密码

在这里插入图片描述

思路: 模拟题

真的太容易错了

from collections import defaultdict

mp = defaultdict(str)

mp['.-'] = 'A'
mp['-...'] = 'B'
mp['-.-.'] = 'C'
mp['-..'] = 'D'
mp['.'] = 'E'

mp['..-.'] = 'F'
mp['--.'] = 'G'
mp['....'] = 'H'
mp['..'] = 'I'
mp['.---'] = 'J'

mp['-.-'] = 'K'
mp['.-..'] = 'L'
mp['--'] = 'M'
mp['-.'] = 'N'
mp['---'] = 'O'

mp['.--.'] = 'P'
mp['--.-'] = 'Q'
mp['.-.'] = 'R'
mp['...'] = 'S'
mp['-'] = 'T'

mp['..-'] = 'U'
mp['...-'] = 'V'
mp['.--'] = 'W'
mp['-..-'] = 'X'
mp['-.--'] = 'Y'
mp['--..'] = 'Z'

mp['.----'] = '1'
mp['..---'] = '2'
mp['...--'] = '3'
mp['....-'] = '4'
mp['.....'] = '5'
mp['-....'] = '6'
mp['--...'] = '7'
mp['---..'] = '8'
mp['----.'] = '9'
mp['-----'] = '0'

mp['..--..'] = '?'
mp['-..-.'] = '/'
mp['-.--.-'] = '()'
mp['-....-'] = '-'
mp['.-.-.-'] = '.'

arr = input().split('.')

res = []
for s in arr:
  s = s.replace('1', '-')
  s = s.replace('0', '.')
  #print (mp[s])
  res.append(mp[s])
print(''.join(res))


光线折射

在这里插入图片描述

光线映射,引入方向,然后模拟之。

我在想,是不是可以用初中物理那种做法,然后映入坐标映射转换。

w, h = list(map(int, input().split()))

dirs = [(1, 1), (-1, 1), (-1, -1), (1, -1)]

x, y = 0, 0
d = 0
for _ in range(3):
  if d == 0:
    dy, dx = h - y, w - x
    if dy == dx:
      y, x = h, w
      d = 2
    elif dy > dx:
      y, x = y + (w - x), w
      d = 1
    else:
      y, x = h, x + (h - y)
      d = 3
  elif d == 1:
    dy, dx = abs(y - h), abs(x)
    if dy == dx:
      y, x = h, 0
      d = 3
    elif dy > dx:
      y, x = y + x, 0
      d = 0
    else:
      y, x = h, x - dy
      d = 2
  elif d == 2:
    dy, dx = y, x
    if dy == dx:
      y, x = 0, 0
      d = 0
    elif dy > dx:
      y, x = y - dx, 0
      d = 3
    else:
      y, x = 0, x - dy
      d = 1
  elif d == 3:
    dy, dx = y, w - x
    if dy == dx:
      y, x = 0, w
      d = 1
    elif dy > dx:
      y, x = y - dx, w
      d = 2
    else:
      y, x = 0, x + dy
      d = 0

print (x, y)

多项式还原

在这里插入图片描述

思路: n+1进制

诈骗题,如果能提取到关键的信息,其实就能快速秒了这题。

这题核心就是 n+1 进制构造

n, m = list(map(int, input().split()))

res = []
i = 0
while m > 0:
    r = m % (n + 1)
    if r > 0:
        res.append((r, i))
    i += 1
    m = m // (n + 1)

rs = []
for (k, v) in reversed(res):
    s = ""
    if k > 1:
        s += str(k)
        if v > 1:
            s += "x^" + str(v)
        elif v == 1:
            s += "x"
    else:
        if v > 1:
            s += "x^" + str(v)
        elif v == 1:
            s += "x"
        else:
            s += str(1)
    rs.append(s)

print('+'.join(rs))

开心消消乐

在这里插入图片描述

经典的回溯问题,很游戏向的一道题

其实蛮折磨人的一道题,即考察dfs又考察bfs。


n, m = list(map(int, input().split()))

grid = []
for _ in range(n):
    row = list(map(int, input().split()))
    grid.append(row)


from collections import deque
def bfs(chess, r, c, vis):
    res = []
    h, w = len(chess), len(chess[0])
    deq = deque()
    deq.append((r, c))
    vis[r][c] = True
    res.append((r, c))
    while len(deq) > 0:
        y, x = deq.popleft()
        for (dy, dx) in [(-1, 0), (1, 0), (0, -1), (0, 1)]:
            ty, tx = y + dy, x + dx
            if 0 <= ty < h and 0 <= tx < w and not vis[ty][tx] and chess[ty][tx] == chess[r][c]:
                vis[ty][tx] = True
                res.append((ty, tx))
                deq.append((ty, tx))
    return res

# 经典的DFS回溯问题
def dfs(chess):
    score = 0
    h, w = len(chess), len(chess[0])
    vis = [[False] * w for _ in range(h)]
    for i in range(h):
        for j in range(w):
            if not vis[i][j] and chess[i][j] != 0:
                cs = bfs(chess, i, j, vis)
                if len(cs) >= 3:
                    nchess = [chess[x][:] for x in range(h)]
                    for (ty, tx) in cs:
                        nchess[ty][tx] = 0
                    for tx in range(w):
                        ty = h - 1
                        ty2 = h - 1
                        while ty >= 0:
                            while ty2 >= 0 and nchess[ty2][tx] == 0:
                                ty2 -= 1
                            if ty2 < 0:
                                nchess[ty][tx] = 0
                            else:
                                nchess[ty][tx] = nchess[ty2][tx]
                            ty -= 1
                            ty2 -= 1
                    r1 = dfs(nchess)
                    score = max(score, r1 + len(cs))
    return score

res = dfs(grid)
print (res)

等式

在这里插入图片描述

思路: 质数筛 + 分子分解

偏数论的一道题

要做好优化,不然容易TLE

大概是预处理筛表 O ( n ) O(n) O(n)+ m n , m 为 n 以内的质数个数 m \sqrt {n}, m为n以内的质数个数 mn ,mn以内的质数个数

import java.io.BufferedInputStream;
import java.util.ArrayList;
import java.util.Arrays;
import java.util.List;
import java.util.Scanner;

public class Main {

    public static void main(String[] args) {
        Scanner sc = new Scanner(new BufferedInputStream(System.in));
        int n = sc.nextInt();

        boolean[] vis = new boolean[n + 1];
        Arrays.fill(vis, true);
        vis[0] = vis[1] = false;
        List<Integer> primes = new ArrayList<>();
        List<Integer> primes2 = new ArrayList<>();
        for (int i = 2; i <= n; i++) {
            if (vis[i]) {
                primes.add(i);
                if (i > n / i) continue;
                primes2.add(i);
                for (int j = i * i; j <= n; j += i) {
                    vis[j] = false;
                }
            }
        }

        long res = 0;
        for (int v: primes) {
            if (n <= v) break;
            int r = 1;
            int cn = n - v;
            if (vis[cn]) continue;
            for (int u: primes2) {
                if (cn < u) break;
                if (u > cn / u) break;
                if (cn % u == 0) {
                    int t = 0;
                    while (cn % u == 0) {
                        t++;
                        cn /= u;
                    }
                    r = r * (t + 1);
                }
            }
            if (cn > 1) r = r * 2;
            res += r;
        }

        System.out.println(res);
    }

}

写在最后

在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值