蓝桥杯双周赛 第 16 场 小白入门赛 解题报告 | 珂学家 | 七夕娱乐场


前言

在这里插入图片描述


题解

因为这场七夕节,所以出的特别友好。

整体还是偏思维。

T6 额外提供组合数学解,还是蛮有趣的。


A. 喜鹊罢工

题型: 签到

365 可以有多少个 7 组成 365可以有多少个7组成 365可以有多少个7组成

向上取整即可

#include <iostream>

using namespace std;

int main()
{
  cout << ((365 + 6) / 7) << endl;
  return 0;
}

B. 牛郎取名

思路: 模拟

对字符进行按序重排,考察字符串API知识点。

#include <bits/stdc++.h>

using namespace std;

int main()
{
  int n;
  string s;
  cin >> n >> s;
  
  string r;
  for (int i = 0; i < n; i++) {
    int p; cin >> p;
    r.push_back(s[p - 1]);
  }
  cout << r << endl;

  return 0;
}

C. 织女的考验

思路: 找规律

可以把字符串拍平为 26维的向量

那么两个字符串能否相等(彼此各删除1个字符),在于这2个向量 差异 要么为0,要么为2

d i f f = ∑ i = 0 i = 25 a b s ( v 1 ( i ) − v 2 ( i ) ) diff = \sum_{i=0}^{i=25} abs(v_1(i) - v_2(i)) diff=i=0i=25abs(v1(i)v2(i))

这样的时间复杂度为 O ( n + 26 ) O(n+26) O(n+26)

#include <bits/stdc++.h>

using namespace std;

int main()
{
  int t;
  cin >> t;
  while (t-- > 0) {
    string s1, s2;
    cin >> s1 >> s2;

    // 向量化
    vector<int> h1(26), h2(26);
    for (char c: s1) h1[c - 'a']++;
    for (char c: s2) h2[c - 'a']++;

    // 求向量差
    int diff = 0;
    for (int i = 0; i < 26; i++) {
      diff += abs(h1[i] - h2[i]);
    }
    if (diff == 0 || diff == 2) {
      cout << "YES\n";
    } else {
      cout << "NO\n";
    }
  }
  return 0;
}

当然这题,也可以大模拟,在构建26维向量后,枚举去掉的字符

然后对比是否相同


D. 仙男仙女

思路: 模拟

需要注意的是,给出的坐标并不是按序的,需要额外排序下。

然后模拟即可,即比对前一位/后一位的差值。

#include <bits/stdc++.h>

using namespace std;

int main()
{
  int n;
  cin >> n;
  vector<array<int, 2>> arr(n);
  for (int i = 0; i < n; i++) {
    cin >> arr[i][0];
  }
  for (int i = 0; i < n; i++) {
    cin >> arr[i][1];
  }
  sort(arr.begin(), arr.end());

  int res = 0;
  for (int i = 0; i < n; i++) {
    bool c1 = (i == 0 || arr[i][0] - arr[i - 1][0] > arr[i][1]);
    bool c2 = (i == n - 1 || arr[i + 1][0] - arr[i][0] > arr[i][1]);
    if (c1 && c2) {
        res++;
    }
  }
  cout << res << endl;

  return 0;
}

E. 牛郎的微信群

思路: 思维题

  • 距离为1,就是节点的度
  • 距离为2, 就是节点u的相邻节点度总和 - 节点u的度

那这样求解,会不会遇到复杂度问题,比如菊花图等

不会,因为它是一个树结构,并不是一个完全图形态

它的枚举量为 O ( V ∗ 2 ) , V 为边数 {O(V * 2) , V为边数} O(V2),V为边数

#include <bits/stdc++.h>
using namespace std;

int main()
{
  int n;
  cin >> n;
  vector<vector<int>> g(n);
  for (int i = 0; i < n - 1; i++) {
    int u, v;
    cin >> u >> v;
    u--; v--;
    g[u].push_back(v);
    g[v].push_back(u);
  }

  vector<int> res(n);
  for (int i = 0; i < n; i++) {
    for (int v: g[i]) {
      res[i] += g[v].size();
    }
    res[i] -= g[i].size();
  }
  for (int i = 0; i < n; i++) {
    cout << res[i] << " \n"[i == n - 1];
  }

  return 0;
}

F. 久别重逢

方法一:前缀和优化的DP

令dp[j] 为 以j结尾的方案数

d p [ j ] = ∑ i = 0 i = j − k d p [ i ] dp[j] = \sum_{i=0}^{i=j-k} dp[i] dp[j]=i=0i=jkdp[i]

公式转移代价为k,但是 n , k ≤ 1 0 5 n, k \le 10^5 n,k105, 所以必须加以优化

这边可以简单地使用前缀和优化,因为只有一侧有限制,控制右侧边界即可。

如果两侧有限制,则需要额外引入双端队列。

#include <bits/stdc++.h>
using namespace std;

const int64_t mod = (int64_t)1e9 + 7;

int main()
{
  int n, k;
  cin >> n >> k;
  int64_t res = 1;
    
  int64_t acc = 0;
  vector<int64_t> dp(n + 1);
  dp[0] = 1;
  for (int i = k; i <= n; i++) {
    acc = (acc + dp[i - k]) % mod;
    dp[i] = acc;
    res = (res + dp[i]) % mod;
  }
  cout << res << endl;
  return 0;
}

题外话:

方法二:组合数学

其实我一开始想到的是,枚举步数x,然后采用组合数学的方式来计算.

利用插板法,固定步数为x,接下来枚举y, y ∈ [ 0 , ( n − k x ) ] y \in [0, (n-kx)] y[0,(nkx)]

∑ y = 0 y = n − k x C ( y + x − 1 , y − 1 ) = C ( n − k x + x , x ) = C ( n − ( k − 1 ) ∗ x , x ) \sum_{y=0}^{y=n-kx} C(y+x-1, y-1) = C(n-kx+x, x) = C(n - (k-1)*x, x) y=0y=nkxC(y+x1,y1)=C(nkx+x,x)=C(n(k1)x,x)

然后在枚举x

最终结果为

∑ x = 0 x = n / k C ( n − ( k − 1 ) ∗ x , x ) \sum_{x=0}^{x=n/k} C(n - (k-1)*x, x) x=0x=n/kC(n(k1)x,x)

#include <bits/stdc++.h>
using namespace std;

int64_t ksm(int64_t b, int64_t v, int64_t mod) {
  int64_t r = 1l;
  while (v > 0) {
    if (v % 2 == 1) r = r * b % mod;
    b = b * b % mod;
    v /= 2;
  }
  return r;
}

int main()
{

  int n, k;
  cin >> n >> k;

  // 组合数计算
  const int64_t mod = (int64_t)1e9 + 7;
  vector<int64_t> fac(n + 1);
  vector<int64_t> inv(n + 1);
  fac[0] = 1;
  for (int i = 1; i <= n; i++) {
    fac[i] = fac[i - 1] * i % mod;
  }
  inv[n] = ksm(fac[n], mod - 2, mod);
  for (int i = n - 1; i >= 0; i--) {
    inv[i] = inv[i + 1] * (i + 1) % mod;
  }

  int64_t res = 0;    
  for (int i = 0; i * k <= n; i++) {
    int r = n - i * k;
    // C(r+i, i)
    res += fac[r + i] * inv[i] % mod * inv[r] % mod;
    res %= mod;
  }
  cout << res << endl;
  return 0;
}

写在最后

在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值