2.算法分析

一、算法分析
前面我们已经介绍了,研究算法的最终目的就是如何花更少的时间,如何占用更少的内存去完成相同的需求,并且
也通过案例演示了不同算法之间时间耗费和空间耗费上的差异,但我们并不能将时间占用和空间占用量化,因此,
接下来我们要学习有关算法时间耗费和算法空间耗费的描述和分析。有关算法时间耗费分析,我们称之为算法的时
间复杂度分析,有关算法的空间耗费分析,我们称之为算法的空间复杂度分析。
1.1 算法的时间复杂度分析
我们要计算算法时间耗费情况,首先我们得度量算法的执行时间,那么如何度量呢?
事后分析估算方法:
比较容易想到的方法就是我们把算法执行若干次,然后拿个计时器在旁边计时,这种事后统计的方法看上去的确不
错,并且也并非要我们真的拿个计算器在旁边计算,因为计算机都提供了计时的功能。这种统计方法主要是通过设
计好的测试程序和测试数据,利用计算机计时器对不同的算法编制的程序的运行时间进行比较,从而确定算法效率
的高低,但是这种方法有很大的缺陷:必须依据算法实现编制好的测试程序,通常要花费大量时间和精力,测试完
了如果发现测试的是非常糟糕的算法,那么之前所做的事情就全部白费了,并且不同的测试环境 ( 硬件环境 ) 的差别
导致测试的结果差异也很大。
public static void main ( String [] args ) {
long start = System . currentTimeMillis ();
int sum = 0 ;
int n = 100 ;
for ( int i = 1 ; i <= n ; i ++ ) {
sum += i ;
}
System . out . println ( "sum=" + sum );
long end = System . currentTimeMillis ();
System . out . println ( end - start );
}
事前分析估算方法:
在计算机程序编写前,依据统计方法对算法进行估算,经过总结,我们发现一个高级语言编写的程序程序在计算机
上运行所消耗的时间取决于下列因素:
1.
算法采用的策略和方案;
2.
编译产生的代码质量;
3. 问题的输入规模 ( 所谓的问题输入规模就是输入量的多少 )
4. 机器执行指令的速度;
由此可见,抛开这些与计算机硬件、软件有关的因素,一个程序的运行时间依赖于算法的好坏和问题的输入规模。
如果算法固定,那么该算法的执行时间就只和问题的输入规模有关系了。
我么再次以之前的求和案例为例,进行分析。
需求:
计算 1 100 的和。
第一种解法:
如果输入量为 n 1 ,则需要计算 1 次;
如果输入量 n 1 亿,则需要计算 1 亿次;
public static void main ( String [] args ) {
int sum = 0 ; // 执行 1
int n = 100 ; // 执行 1
for ( int i = 1 ; i <= n ; i ++ ) { // 执行了 n+1
sum += i ; // 执行了 n
}
System . out . println ( "sum=" + sum );
}
第二种解法:
如果输入量为 n 1 ,则需要计算 1 次;
如果输入量 n 1 亿,则需要计算 1 次;
public static void main ( String [] args ) {
int sum = 0 ; // 执行 1
int n = 100 ; // 执行 1
sum = ( n + 1 ) * n / 2 ; // 执行 1
System . out . println ( "sum=" + sum );
}
因此,当输入规模为 n 时,第一种算法执行了 1+1+(n+1)+n=2n+3 次;第二种算法执行了 1+1+1=3 次。如果我们把
第一种算法的循环体看做是一个整体,忽略结束条件的判断,那么其实这两个算法运行时间的差距就是 n 1 的差
距。
为什么循环判断在算法 1 里执行了 n+1 次,看起来是个不小的数量,但是却可以忽略呢?我们来看下一个例子:
需求:
计算 100 1+100 2+100 3+...100 100 的结果
代码
public static void main ( String [] args ) {
int sum = 0 ;
int n = 100 ;
for ( int i = 1 ; i <= n ; i ++ ) {
for ( int j = 1 ; j <= n ; j ++ ) {
sum += i ;
}
}
System . out . println ( "sum=" + sum );
}
上面这个例子中,如果我们要精确的研究循环的条件执行了多少次,是一件很麻烦的事情,并且,由于真正计算和
的代码是内循环的循环体,所以,在研究算法的效率时,我们只考虑核心代码的执行次数,这样可以简化分析。
我们研究算法复杂度,侧重的是当输入规模不断增大时,算法的增长量的一个抽象 ( 规律 ) ,而不是精确地定位需要
执行多少次,因为如果是这样的话,我们又得考虑回编译期优化等问题,容易主次跌倒。
我们不关心编写程序所用的语言是什么,也不关心这些程序将跑在什么样的计算机上,我们只关心它所实现的算
法。这样,不计那些循环索引的递增和循环终止的条件、变量声明、打印结果等操作,最终在分析程序的运行时间
时,最重要的是把程序看做是独立于程序设计语言的算法或一系列步骤。我们分析一个算法的运行时间,最重要的
就是把核心操作的次数和输入规模关联起来

 

1.1.1 函数渐近增长
概念:
给定两个函数 f(n) g(n), 如果存在一个整数 N ,使得对于所有的 n>N,f(n) 总是比 g(n) 大,那么我们说 f(n) 的增长渐近 快于g(n)
概念似乎有点艰涩难懂,那接下来我们做几个测试。
public static void main ( String [] args ) {
int sum = 0 ;
int n = 100 ;
for ( int i = 1 ; i <= n ; i ++ ) {
for ( int j = 1 ; j <= n ; j ++ ) {
sum += i ;
}
}
System . out . println ( "sum=" + sum );
}
测试一:
假设四个算法的输入规模都是 n
1. 算法 A1 要做 2n+3 次操作,可以这么理解:先执行 n 次循环,执行完毕后,再有一个 n 次循环,最后有 3 次运算;
2.算法A2 要做 2n 次操作;
3. 算法 B1 要做 3n+1 次操作,可以这个理解:先执行 n 次循环,再执行一个 n 次循环,再执行一个 n 次循环,最后有 1
次运算。
4.算法B2 要做 3n 次操作;
那么,上述算法,哪一个更快一些呢?

通过数据表格,比较算法 A1 和算法 B1
当输入规模 n=1 时, A1 需要执行 5 次, B1 需要执行 4 次,所以 A1 的效率比 B1 的效率低;
当输入规模 n=2 时, A1 需要执行 7 次, B1 需要执行 7 次,所以 A1 的效率和 B1 的效率一样;
当输入规模 n>2 时, A1 需要的执行次数一直比 B1 需要执行的次数少,所以 A1 的效率比 B1 的效率高;
所以我们可以得出结论:
当输入规模 n>2 时,算法 A1 的渐近增长小于算法 B1 的渐近增长
通过观察折线图,我们发现,随着输入规模的增大,算法 A1 和算法 A2 逐渐重叠到一块,算法 B1 和算法 B2 逐渐重叠
到一块,所以我们得出结论:
随着输入规模的增大,算法的常数操作可以忽略不计
测试二:
假设四个算法的输入规模都是 n
1. 算法 C1 需要做 4n+8 次操作
2. 算法 C2 需要做 n 次操作
3. 算法 D1 需要做 2n^2 次操作
4.算法D2 需要做 n^2 次操作
那么上述算法,哪个更快一些?

 

通过数据表格,对比算法 C1 和算法 D1
当输入规模 n<=3 时,算法 C1 执行次数多于算法 D1 ,因此算法 C1 效率低一些;
当输入规模 n>3 时,算法 C1 执行次数少于算法 D1 ,因此,算法 D2 效率低一些,
所以,总体上,算法 C1 要优于算法 D1.
通过折线图,对比对比算法 C1 C2
随着输入规模的增大,算法 C1 和算法 C2 几乎重叠
通过折线图,对比算法 C 系列和算法 D 系列:
随着输入规模的增大,即使去除 n^2 前面的常数因子, D 系列的次数要远远高于 C 系列。
因此,可以得出结论:
随着输入规模的增大,与最高次项相乘的常数可以忽略
测试三:
假设四个算法的输入规模都是 n
算法 E1:
2n^2+3n+1;
算法 E2
n^2
算法 F1
2n^3+3n+1
算法 F2
n^3
那么上述算法,哪个更快一些?

 

 

通过数据表格,对比算法 E1 和算法 F1
n=1 时,算法 E1 和算法 F1 的执行次数一样;
n>1 时,算法 E1 的执行次数远远小于算法 F1 的执行次数;
所以算法 E1 总体上是由于算法 F1 的。
通过折线图我们会看到,算法 F 系列随着 n 的增长会变得特块,算法 E 系列随着 n 的增长相比较算法 F 来说,变得比较
慢,所以可以得出结论:
最高次项的指数大的,随着 n 的增长,结果也会变得增长特别快
测试四:
假设五个算法的输入规模都是 n
算法 G
n^3;
算法 H:
n^2;
算法 I
n:
算法 J
logn
算法 K:
1
那么上述算法,哪个效率更高呢?

 

 

通过观察数据表格和折线图,很容易可以得出结论:
算法函数中 n 最高次幂越小,算法效率越高
总上所述,在我们比较算法随着输入规模的增长量时,可以有以下规则:
1. 算法函数中的常数可以忽略;
2. 算法函数中最高次幂的常数因子可以忽略;
3. 算法函数中最高次幂越小,算法效率越高。
1.1.2 算法时间复杂度
1.1.2.1 O 记法
定义:
在进行算法分析时,语句总的执行次数 T(n) 是关于问题规模 n 的函数,进而分析 T(n) 随着 n 的变化情况并确定 T(n)
量级。算法的时间复杂度,就是算法的时间量度,记作 :T(n)=O(f(n)) 。它表示随着问题规模 n 的增大,算法执行时间
的增长率和 f(n) 的增长率相同,称作算法的渐近时间复杂度,简称时间复杂度,其中 f(n) 是问题规模 n 的某个函数。
在这里,我们需要明确一个事情: 执行次数 = 执行时间
用大写 O() 来体现算法时间复杂度的记法,我们称之为大 O 记法。一般情况下,随着输入规模 n 的增大, T(n) 增长最
慢的算法为最优算法。
下面我们使用大 O 表示法来表示一些求和算法的时间复杂度:
算法一:
public static void main ( String [] args ) {
int sum = 0 ; // 执行 1
int n = 100 ; // 执行 1
sum = ( n + 1 ) * n / 2 ; // 执行 1
System . out . println ( "sum=" + sum );
}
算法二:
public static void main ( String [] args ) {
int sum = 0 ; // 执行 1
int n = 100 ; // 执行 1
for ( int i = 1 ; i <= n ; i ++ ) {
sum += i ; // 执行了 n
}
System . out . println ( "sum=" + sum );
}
算法三:
public static void main ( String [] args ) {
int sum = 0 ; // 执行 1
int n = 100 ; // 执行 1
for ( int i = 1 ; i <= n ; i ++ ) {
for ( int j = 1 ; j <= n ; j ++ ) {
sum += i ; // 执行 n^2
}
}
System . out . println ( "sum=" + sum );
}
如果忽略判断条件的执行次数和输出语句的执行次数,那么当输入规模为 n 时,以上算法执行的次数分别为:
算法一: 3
算法二: n+3
算法三: n^2+2
如果用大 O 记法表示上述每个算法的时间复杂度,应该如何表示呢?基于我们对函数渐近增长的分析,推导大 O
的表示法有以下几个规则可以使用:
1. 用常数 1 取代运行时间中的所有加法常数;
2. 在修改后的运行次数中,只保留高阶项;
3. 如果最高阶项存在,且常数因子不为 1 ,则去除与这个项相乘的常数;
所以,上述算法的大 O 记法分别为:
算法一: O(1)
算法二: O(n)
算法三: O(n^2)
1.1.2.2 常见的大 O
1. 线性阶
一般含有非嵌套循环涉及线性阶,线性阶就是随着输入规模的扩大,对应计算次数呈直线增长,例如:
public static void main ( String [] args ) {
int sum = 0 ;
int n = 100 ;
for ( int i = 1 ; i <= n ; i ++ ) {
sum += i ;
}
System . out . println ( "sum=" + sum );
}
上面这段代码,它的循环的时间复杂度为 O(n), 因为循环体中的代码需要执行 n
2. 平方阶
一般嵌套循环属于这种时间复杂度
public static void main ( String [] args ) {
int sum = 0 , n = 100 ;
for ( int i = 1 ; i <= n ; i ++ ) {
for ( int j = 1 ; j <= n ; j ++ ) {
sum += i ;
}
}
System . out . println ( sum );
}
上面这段代码, n=100 ,也就是说,外层循环每执行一次,内层循环就执行 100 次,那总共程序想要从这两个循环
中出来,就需要执行 100*100 次,也就是 n 的平方次,所以这段代码的时间复杂度是 O(n^2).
3. 立方阶
一般三层嵌套循环属于这种时间复杂度
public static void main ( String [] args ) {
int x = 0 , n = 100 ;
for ( int i = 1 ; i <= n ; i ++ ) {
for ( int j = i ; j <= n ; j ++ ) {
for ( int j = i ; j <= n ; j ++ ) {
x ++ ;
}
}
}
System . out . println ( x );
}
上面这段代码, n=100 ,也就是说,外层循环每执行一次,中间循环循环就执行 100 次,中间循环每执行一次,最
内层循环需要执行 100 次,那总共程序想要从这三个循环中出来,就需要执行 100 100 100 次,也就是 n 的立方,所
以这段代码的时间复杂度是 O(n^3).
4. 对数阶
对数,属于高中数学的内容,我们分析程序以程序为主,数学为辅,所以不用过分担心。
int i = 1 , n = 100 ;
while ( i < n ){
i = i * 2 ;
}
由于每次 i*2 之后,就距离 n 更近一步,假设有 x 2 相乘后大于 n ,则会退出循环。由于是 2^x=n, 得到 x=log(2)n,
以这个循环的时间复杂度为 O(logn);
对于对数阶,由于随着输入规模 n 的增大,不管底数为多少,他们的增长趋势是一样的,所以我们会忽略底数。

 

 

5. 常数阶
一般不涉及循环操作的都是常数阶,因为它不会随着 n 的增长而增加操作次数。例如:
public static void main ( String [] args ) {
int n = 100 ;
int i = n + 2 ;
System . out . println ( i );
}
上述代码,不管输入规模 n 是多少,都执行 2 次,根据大 O 推导法则,常数用 1 来替换,所以上述代码的时间复杂度
O(1)
下面是对常见时间复杂度的一个总结:

 

他们的复杂程度从低到高依次为:
O(1)<O(logn)<O(n)<O(nlogn)<O(n^2)<O(n^3)
根据前面的折线图分析,我们会发现,从平方阶开始,随着输入规模的增大,时间成本会急剧增大,所以,我们的
算法,尽可能的追求的是 O(1),O(logn),O(n),O(nlogn) 这几种时间复杂度,而如果发现算法的时间复杂度为平方阶、
立方阶或者更复杂的,那我们可以分为这种算法是不可取的,需要优化。
1.1.2.3 函数调用的时间复杂度分析
之前,我们分析的都是单个函数内,算法代码的时间复杂度,接下来我们分析函数调用过程中时间复杂度。
案例一:
public static void main ( String [] args ) {
int n = 100 ;
for ( int i = 0 ; i < n ; i ++ ) {
show ( i );
}
}
private static void show ( int i ) {
System . out . println ( i );
}
main 方法中,有一个 for 循环,循环体调用了 show 方法,由于 show 方法内部只执行了一行代码,所以 show 方法
的时间复杂度为 O(1), main 方法的时间复杂度就是 O(n)
案例二:
public static void main ( String [] args ) {
int n = 100 ;
for ( int i = 0 ; i < n ; i ++ ) {
show ( i );
}
}
private static void show ( int i ) {
for ( int j = 0 ; j < i ; i ++ ) {
System . out . println ( i );
}
}
main 方法中,有一个 for 循环,循环体调用了 show 方法,由于 show 方法内部也有一个 for 循环,所以 show 方法
的时间复杂度为 O(n), main 方法的时间复杂度为 O(n^2)
案例三:
public static void main ( String [] args ) {
int n = 100 ;
show ( n );
for ( int i = 0 ; i < n ; i ++ ) {
show ( i );
}
for ( int i = 0 ; i < n ; i ++ ) {
for ( int j = 0 ; j < n ; j ++ ) {
System . out . println ( j );
}
}
}
private static void show ( int i ) {
for ( int j = 0 ; j < i ; i ++ ) {
System . out . println ( i );
}
show 方法中,有一个 for 循环,所以 show 方法的时间复杂度为 O(n), main 方法中, show(n) 这行代码内部执行
的次数为 n ,第一个 for 循环内调用了 show 方法,所以其执行次数为 n^2, 第二个嵌套 for 循环内只执行了一行代码,
所以其执行次数为 n^2, 那么 main 方法总执行次数为 n+n^2+n^2=2n^2+n 。根据大 O 推导规则,去掉 n 保留最高阶
项,并去掉最高阶项的常数因子 2 ,所以最终 main 方法的时间复杂度为 O(n^2)
1.1.2.4 最坏情况
从心理学角度讲,每个人对发生的事情都会有一个预期,比如看到半杯水,有人会说:哇哦,还有半杯水哦!但也
有人会说:天哪,只有半杯水了。一般人处于一种对未来失败的担忧,而在预期的时候趋向做最坏的打算,这样即
使最糟糕的结果出现,当事人也有了心理准备,比较容易接受结果。假如最糟糕的结果并没有出现,当事人会很快
乐。
算法分析也是类似,假如有一个需求:
有一个存储了 n 个随机数字的数组,请从中查找出指定的数字。
public int search ( int num ){
int [] arr = { 11 , 10 , 8 , 9 , 7 , 22 , 23 , 0 };
for ( int i = 0 ; i < arr . length ; i ++ ) {
if ( num == arr [ i ]){
return i ;
}
}
return - 1 ;
}
最好情况:
查找的第一个数字就是期望的数字,那么算法的时间复杂度为 O(1)
最坏情况:
查找的最后一个数字,才是期望的数字,那么算法的时间复杂度为 O(n)
平均情况:
任何数字查找的平均成本是 O(n/2)
最坏情况是一种保证,在应用中,这是一种最基本的保障,即使在最坏情况下,也能够正常提供服务,所以,除非
特别指定,我们提到的运行时间都指的是最坏情况下的运行时间。
1.2 算法的空间复杂度分析
计算机的软硬件都经历了一个比较漫长的演变史,作为为运算提供环境的内存,更是如此,从早些时候的 512k,
历了 1M 2M 4M... 等,发展到现在的 8G ,甚至 16G 32G ,所以早期,算法在运行过程中对内存的占用情况也是
一个经常需要考虑的问题。我么可以用算法的空间复杂度来描述算法对内存的占用。
1.2.1java 中常见内存占用
1. 基本数据类型内存占用情况:

 2.计算机访问内存的方式都是一次一个字节

 

3. 一个引用(机器地址)需要 8 个字节表示:
例如: Date date = new Date(), date 这个变量需要占用 8 个字节来表示
4. 创建一个对象,比如 new Date() ,除了 Date 对象内部存储的数据 ( 例如年月日等信息 ) 占用的内存,该对象本身也
有内存开销,每个对象的自身开销是 16 个字节,用来保存对象的头信息。
5. 一般内存的使用,如果不够 8 个字节,都会被自动填充为 8 字节:

 6.java中数组被被限定为对象,他们一般都会因为记录长度而需要额外的内存,一个原始数据类型的数组一般需要

24 字节的头信息 (16 个自己的对象开销, 4 字节用于保存长度以及 4 个填充字节 ) 再加上保存值所需的内存。
1.2.2 算法的空间复杂度
了解了 java 的内存最基本的机制,就能够有效帮助我们估计大量程序的内存使用情况。
算法的空间复杂度计算公式记作: S(n)=O(f(n)), 其中 n 为输入规模, f(n) 为语句关于 n 所占存储空间的函数。
案例:
对指定的数组元素进行反转,并返回反转的内容。
解法一:
public static int [] reverse1 ( int [] arr ){
int n = arr . length ; // 申请 4 个字节
int temp ; // 申请 4 个字节
for ( int start = 0 , end = n - 1 ; start <= end ; start ++ , end -- ){
temp = arr [ start ];
arr [ start ] = arr [ end ];
arr [ end ] = temp ;
}
return arr ;
}
解法二:
public static int [] reverse2 ( int [] arr ){
int n = arr . length ; // 申请 4 个字节
int [] temp = new int [ n ]; // 申请 n*4 个字节 + 数组自身头信息开销 24 个字节
for ( int i = n - 1 ; i >= 0 ; i -- ) {
temp [ n - 1 - i ] = arr [ i ];
}
return temp ;
}
忽略判断条件占用的内存,我们得出的内存占用情况如下:
算法一:
不管传入的数组大小为多少,始终额外申请 4+4=8 个字节;
算法二:
4+4n+24=4n+28;
根据大 O 推导法则,算法一的空间复杂度为 O(1), 算法二的空间复杂度为 O(n), 所以从空间占用的角度讲,算法一要
优于算法二。
由于 java 中有内存垃圾回收机制,并且 jvm 对程序的内存占用也有优化(例如即时编译),我们无法精确的评估一
java 程序的内存占用情况,但是了解了 java 的基本内存占用,使我们可以对 java 程序的内存占用情况进行估算。
由于现在的计算机设备内存一般都比较大,基本上个人计算机都是 4G 起步,大的可以达到 32G ,所以内存占用一般
情况下并不是我们算法的瓶颈,普通情况下直接说复杂度,默认为算法的时间复杂度。
但是,如果你做的程序是嵌入式开发,尤其是一些传感器设备上的内置程序,由于这些设备的内存很小,一般为几
kb ,这个时候对算法的空间复杂度就有要求了,但是一般做 java 开发的,基本上都是服务器开发,一般不存在这样
的问题。
  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

怀化第一深情

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值