差分隐私:原理、应用与展望 记录

差分隐私:原理、应用与展望_哔哩哔哩_bilibili

主讲人:萧小奎

隐私保护挑战

匿名化,粗粒度依然有可能被攻击住重构出部分数据

直接发布统计数据容易被重构算法攻击,那么发布一个机器学习模型呢?

仍然有可能泄露隐私,模型对于原数据的元组可能跟其他元组上的表现不一样

差分隐私原理: 略

差分隐私不同噪声机制:拉普拉斯、随机化问答,或者根据不同场景设计差分隐私的方法

差分隐私数据库:略

差分隐私机器学习

在神经网络计算梯度的时候加入噪声,这个梯度是用来更新权重参数的(因为只有计算梯度的时候需要加载源数据)

差分隐私数据采集:略

差分隐私数据合成:略

展望:

隐私和准确性的平衡

对于差分隐私机器学习:1.准确度 2.不能很好处理复杂模型如GAN(训练时每一步加噪声,经过很多步训练,隐私开销巨大)

差分隐私过于保守(默认攻击者清楚n-1个人的信息),不够贴近现实,有不少人改进差分隐私但是太复杂,差分隐私本身有优雅简洁的数学表达

满足差分隐私不等于满足法律条文,从法律条文出发设计隐私保护模型并借鉴差分隐私思想

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值