14.1 矩阵幂级数

矩阵的幂

  现在讨论下矩阵的n次方的问题,比如下面的矩阵:
A 1 = ( 2 1 − 1 1 2 − 1 − 1 − 1 2 ) A 2 = ( 6 5 − 5 5 6 − 5 − 5 − 5 6 ) A 3 = ( 22 21 − 21 21 22 − 21 − 21 − 21 22 )   A^ 1 = \begin{pmatrix}2 & 1 & -1\\ 1 & 2 & -1\\ -1 & -1 & 2\\ \end{pmatrix}\\ A^ 2 = \begin{pmatrix}6 & 5 & -5\\ 5 & 6 & -5\\ -5 & -5 & 6\\ \end{pmatrix}\\ A^ 3 = \begin{pmatrix}22 & 21 & -21\\ 21 & 22 & -21\\ -21 & -21 & 22\\ \end{pmatrix}\\\ A1= 211121112 A2= 655565556 A3= 222121212221212122  
  后面的我就不算下去了,越算越大。再看看这个矩阵:
A 1 = ( 0.1 0.2 0 0.5 0.5 0.5 0 0.2 0.5 ) A 2 = ( 0.11 0.12 0.1 0.3 0.45 0.5 0.1 0.2 0.35 ) A 3 = ( 0.071 0.102 0.11 0.255 0.385 0.475 0.11 0.19 0.275 ) A 4 = ( 0.058 0.087 0.106 0.218 0.338 0.43 0.106 0.172 0.232 ) ⋮ A ∞ = ( 0 0 0 0 0 0 0 0 0 ) A^ 1 = \begin{pmatrix}0.1 & 0.2 & 0\\ 0.5 & 0.5 & 0.5\\ 0 & 0.2 & 0.5\\ \end{pmatrix} \\ A^ 2 = \begin{pmatrix}0.11 & 0.12 & 0.1\\ 0.3 & 0.45 & 0.5\\ 0.1 & 0.2 & 0.35\\ \end{pmatrix} \\ A^ 3 = \begin{pmatrix}0.071 & 0.102 & 0.11\\ 0.255 & 0.385 & 0.475\\ 0.11 & 0.19 & 0.275\\ \end{pmatrix} \\ A^ 4 = \begin{pmatrix}0.058 & 0.087 & 0.106\\ 0.218 & 0.338 & 0.43\\ 0.106 & 0.172 & 0.232\\ \end{pmatrix} \\ \vdots\\ A^ {\infty} = \begin{pmatrix}0 & 0 & 0\\ 0 & 0 & 0\\ 0 & 0 & 0\\ \end{pmatrix} A

评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

醒过来摸鱼

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值