9.5 Bernstein多项式

  伯恩斯坦多项式,即可以用来做插值,也可以用来做逼近。但是伯恩斯坦多项式只在[0,1]的定义域范围内接近目标函数。如果用来做逼近,那么只需要代入几个关键点的真实函数值就可以了。如果用来做插值,那么要求自变量x必须间距相等。伯恩斯坦多项式,有最高处次数n,n越大,越逼近原函数。
  伯恩斯坦多项式的定义如下:
B n ( f ) = ∑ k = 0 n ( n k ) x k ( 1 − x ) n − k f ( k n ) B_n(f)=\sum_{k=0}^{n}\binom{n}{k}x^k(1-x)^{n-k}f(\frac{k}{n}) Bn(f)=k=0n(kn)xk(1x)nkf(nk)

正弦函数举例

  先看看正弦函数的2次伯恩斯坦多项式,代入公式,我们知道;
B 2 ( s i n ) = ∑ k = 0 2 ( 2 k ) x k ( 1 − x ) 2 − k f ( k 2 ) = ∑ k = 0 2 ( 2 k ) x k ( 1 − x ) 2 − k f ( k 2 ) = ( 2 0 ) x 0 ( 1 − x ) 2 − 0 f ( 0 2 ) + ( 2 1 ) x 1 ( 1 − x

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

醒过来摸鱼

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值