伯恩斯坦多项式,即可以用来做插值,也可以用来做逼近。但是伯恩斯坦多项式只在[0,1]的定义域范围内接近目标函数。如果用来做逼近,那么只需要代入几个关键点的真实函数值就可以了。如果用来做插值,那么要求自变量x必须间距相等。伯恩斯坦多项式,有最高处次数n,n越大,越逼近原函数。
伯恩斯坦多项式的定义如下:
B n ( f ) = ∑ k = 0 n ( n k ) x k ( 1 − x ) n − k f ( k n ) B_n(f)=\sum_{k=0}^{n}\binom{n}{k}x^k(1-x)^{n-k}f(\frac{k}{n}) Bn(f)=k=0∑n(kn)xk(1−x)n−kf(nk)
正弦函数举例
先看看正弦函数的2次伯恩斯坦多项式,代入公式,我们知道;
B 2 ( s i n ) = ∑ k = 0 2 ( 2 k ) x k ( 1 − x ) 2 − k f ( k 2 ) = ∑ k = 0 2 ( 2 k ) x k ( 1 − x ) 2 − k f ( k 2 ) = ( 2 0 ) x 0 ( 1 − x ) 2 − 0 f ( 0 2 ) + ( 2 1 ) x 1 ( 1 − x