【线性代数基础】线性代数给鸡兔同笼问题带来了什么?
在小学阶段,我们曾经遇到过这样的问题:
鸡兔同笼问题
在一个笼子当中,有若干只鸡和兔子,经过观察发现,有3头8脚,问笼子中一共有多少只鸡,多少只兔子。
在小学阶段,我们会这样想,我们让鸡和兔子都抬起两只脚,这样笼子中着地的脚的数目为 8 − 3 × 2 = 2 8-3\times2=2 8−3×2=2,这两只脚显然都是兔子的,因此兔子只有1只,那么鸡就有2只。
后来,进入中学阶段,我们学习了二元一次方程组,它规范了小学的解法,用数学语言精确地表达出来。根据上面的问题,我们得到这样的方程组:
x
+
y
=
3
2
x
+
y
=
4
\begin{align} x + y &= 3 \\ 2x + y &= 4 \end{align}
x+y2x+y=3=4
使用消元的方法就能得到:
x
=
1
y
=
2
\begin{align} x=1\\y=2 \end{align}
x=1y=2
而事实上,小学阶段的那种方法其实是解二元一次方程组消元方法的通俗解释。
在我们学习了坐标系之后,代数与几何的思想发生了碰撞,我们从解析几何的角度,解释二元一次方程组的解。我们知道,
(
1
)
(1)
(1)与
(
2
)
(2)
(2)其实是直线方程,而两条直线的交点既满足直线
(
1
)
(1)
(1),也满足直线
(
2
)
(2)
(2),交点的横纵坐标就是方程组的解。
利用这种思想,我们可以利用平面几何解释二元一次方程组的解,利用立体几何解释三元一次方程组的解。然而,由于我们并不知道四维甚至更高维空间是什么样子,这种思路的局限性也就体现出来了,而传统的解法又过于繁琐,我们是否能从更好的角度看待这个问题呢?
当我们接触线性代数后,我们发现,有新的工具,新的思路帮我们解决这个问题。许多线性代数的书也是从线性方程组的解开始谈起的。
我们将
(
1
)
(
2
)
(1)(2)
(1)(2)写成矩阵的形式:
[
1
1
2
1
]
[
x
y
]
=
[
3
4
]
A
B
=
C
\begin{bmatrix} 1 & 1\\2 & 1 \end{bmatrix} \begin{bmatrix} x\\y \end{bmatrix}= \begin{bmatrix} 3\\4 \end{bmatrix}\\AB=C
[1211][xy]=[34]AB=C
我们可以这样理解,一个向量在一个线性变换的作用下,得到了另一个向量。
我们要求
B
B
B,可以这样处理,左右同时左乘
A
−
1
A^{-1}
A−1,得到
B
=
C
A
−
1
B=CA^{-1}
B=CA−1,也就是下图的过程:
点
D
D
D在逆变换的作用下变成了点
(
1
,
2
)
(1,2)
(1,2),于是我们得到:
B
=
[
1
2
]
B=\begin{bmatrix} 1\\2 \end{bmatrix}
B=[12]
这个问题可以这样看,找到1个点
(
x
,
y
)
(x,y)
(x,y),使得其在线性变换后,变成
(
3
,
4
)
(3,4)
(3,4)。
那么从这个角度又如何解释方程组无解或者无穷多解的情况呢?
我们先来看无解的情况:
矩阵
A
1
=
[
1
2
2
4
]
[
1
2
2
4
]
[
x
y
]
=
[
3
4
]
A_{1}=\begin{bmatrix} 1 & 2\\2 &4 \end{bmatrix}\\ \begin{bmatrix} 1 & 2\\2& 4 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix}=\begin{bmatrix}3\\4 \end{bmatrix}
A1=[1224][1224][xy]=[34]对应的线性方程组显然是无解的,在二维平面直角坐标系中解释这一现象,两条直线平行,没有交点。
同时,我们发现,在矩阵
A
1
A_{1}
A1所对应线性变换的作用下,整个二维平面空间被压缩成一条直线。
也就是说,原平面中所有的点都被压缩到这条直线上,点
(
3
,
4
)
(3,4)
(3,4)并不在直线上,找不到一个点
(
x
,
y
)
(x,y)
(x,y)经过线性变换变成点
(
3
,
4
)
(3,4)
(3,4),原线性方程组无解。
我们再来看无穷多解的情况:
B
1
=
[
1
2
2
4
]
[
1
2
2
4
]
[
x
y
]
=
[
3
6
]
B_{1}=\begin{bmatrix}1 &2\\2&4 \end{bmatrix}\\\begin{bmatrix}1&2\\2&4 \end{bmatrix}\begin{bmatrix}x\\y \end{bmatrix}=\begin{bmatrix}3\\6 \end{bmatrix}
B1=[1224][1224][xy]=[36]
在二维平面直角坐标系中看,两条直线重合,有无数个交点,自然就有无穷多个解。
从线性变换的角度,整个空间的点都被压缩到一条直线上,而点
(
3
,
6
)
(3,6)
(3,6)正好就在这条直线上。
那么什么样的点经过线性变换到达
E
E
E点?
我们发现,只要该点位于直线
x
+
2
y
=
3
x+2y=3
x+2y=3上,在经过线性变换后,就能得到
E
E
E点,这样的点有无穷多个,因此,解有无穷多个。
由此看来,线性代数的发展使得我们看问题的角度上升了一个层次。在数学中,我们一直在寻找全新的体系,它既能解释我们过去所发现的一切,又能给我们带来更多全新的角度去发现问题,解决问题。