复数入门

qwq

数轴

这是数轴(的一部分):

...  -2  -1  0   1   2  ...
 |   |   |   |   |   |   |
 -------------------------

这也是数轴的一部分:

... 114511 114512 114513 114514 114515 114516 ...
 |    |      |      |      |      |      |     |
 -----------------------------------------------
                            |
               114514.1919810 大概在这里

可见,数轴是无限长的,你可以在上面找到所有的实数,比如 114514 , 1919810 , 114514.1919810 114514,1919810,114514.1919810 114514,1919810,114514.1919810 114514.1919810 114514.1919810 114514.1919810 114514 114514 114514 114515 114515 114515 之间,靠近 114514 114514 114514)。

平方

等等,小学不是学过平方吗?

回顾一下, a a a 的平方,就是 a 2 a^2 a2,其实就是 a × a a \times a a×a

这里有一个知识点:所有实数(小学生可理解为所有的数字)的平方都是非负数。

为什么呢?负负得正,如果没学过,就是:

a 2 a^2 a2

如果 a ≥ 0 a \ge 0 a0:则两个非负数相乘,不可能是负数(溢出请忽略)。

如果 a < 0 a < 0 a<0 a a a 可表示为 − b -b b,其中 b b b 是某个正数,我们不关心是几,知道是个正数就好。 − b -b b 就是 − 1 × b -1 \times b 1×b

a 2 = ( − 1 × b ) 2 = ( − 1 × b ) × ( − 1 × b ) = ( − 1 × − 1 ) × ( b × b ) = 1 × ( b × b ) = b × b = b 2 \begin{aligned} & a^2 \\ = & (-1 \times b)^2 \\ = & (-1 \times b) \times (-1 \times b) \\ = & (-1 \times -1) \times (b \times b) \\ = & 1 \times (b \times b) \\ = & b \times b \\ = & b^2 \end{aligned} ======a2(1×b)2(1×b)×(1×b)(1×1)×(b×b)1×(b×b)b×bb2

显然,由于 b b b 是个正数,则 b 2 b^2 b2 必然是个正数,则 a 2 a^2 a2 也必然是个正数( a 2 a^2 a2 b 2 b^2 b2 是一样的嘛)。

平方根

       平方树
         |
         |
         |
        /|\
       / | \
      /  |  \
     /|\/|\/|\
  平方的根(平方根)

开个玩笑。

我们现在有一个 可爱的 非负 a a a

我们对它平方了一下,得到了 a 2 a^2 a2,记为 b b b

b b b a a a 的平方,那么 a a a b b b 的什么呢?

通过观察标题发现, a a a b b b 的平方根。

b b b a a a 的平方记作 a = b 2 a=b^2 a=b2 b b b a a a 的平方根记作 b = a b=\sqrt{a} b=a ,还可以记作 b = a 0.5 b=a^{0.5} b=a0.5,不过第一种更常用。(注意到 2 × 0.5 = 1 2 \times 0.5 = 1 2×0.5=1,猜测立方根也可以记作 b = a 1 3 b=a^{\frac{1}{3}} b=a31,是正确的,但是我们这里不用。)

也就是说, a = b a=\sqrt{b} a=b

我们又知道, b = a 2 b=a^2 b=a2

所以我们可以知道, a = a 2 a=\sqrt{a^2} a=a2

这个规律对于所有的实数都成立。

吗?

No。

观察力强的同学可以发现,你拥有了所有 上面我加粗了一个词,非负

显然,我们知道, 1 , 145 , 141 , 919 , 81 0 2 = 1 , 311 , 350 , 016 , 506 , 132 , 470 , 436 , 100 \cancel{1,145,141,919,810^2=1,311,350,016,506,132,470,436,100} 1,145,141,919,8102=1,311,350,016,506,132,470,436,100

上面一段废除,因为 1 , 311 , 350 , 016 , 506 , 132 , 470 , 436 , 100 1,311,350,016,506,132,470,436,100 1,311,350,016,506,132,470,436,100 可能有一丢丢的……大,对于基础薄弱的同学,状态不好时不能在 10 s 10\mathrm{s} 10s 内精准计算出来。

显然,我们知道, 4 2 = 16 4^2=16 42=16

所以,我们就能知道, 16 = 4 \sqrt{16}=4 16 =4。这都是很显然的。

但是,我们还能知道, ( − 4 ) 2 = ( − 4 ) × ( − 4 ) = 16 (-4)^2 = (-4) \times (-4) = 16 (4)2=(4)×(4)=16

所以,我们就能知道, 16 = − 4 \sqrt{16}=-4 16 =4

综上, 4 = − 4 4=-4 4=4

我们可以继续推:

4 = − 4 1 = − 1 2 = 0 0 = 2 0 = 1 0 + 1 + 1 = 1 + 1 + 1 1 + 1 = 3 \begin{aligned} 4=&-4\\ 1=&-1\\ 2=&0\\ 0=&2\\ 0=&1\\ 0+1+1=&1+1+1\\ 1+1=&3 \end{aligned} 4=1=2=0=0=0+1+1=1+1=410211+1+13

情况不太妙,是不是?

所以,我们需要从根本上解决这个问题。

a 2 = a \sqrt{a^2}=a a2 =a 仅仅对于非负数成立( 0 0 0 也成立)。

a 2 \sqrt{a^2} a2 的真正名称是算术平方根。

而平方根,都有两个答案,它们互为相反数,一个是 k k k 一个是 − k -k k

note:以下我可能嘴瓢把算术平方根说成平方根,如果没有特殊说明请当成算术平方根。

平方根的乘除性质。

有两条定理:

  1. a × b = a b \sqrt{a} \times \sqrt{b} = \sqrt{ab} a ×b =ab 根号消失定理
  2. a b = a b \dfrac{\sqrt{a}}{\sqrt{b}} = \sqrt{\dfrac{a}{b}} b a =ba 根号消失定理 × 2 \cancel{\times 2} ×2

其实它们的原理都很简单:

第一种:首先 a × b = a b a \times b = ab a×b=ab,将 a a a 变为 a \sqrt{a} a b b b 变为 b \sqrt{b} b a b ab ab 变为 a b \sqrt{ab} ab ,就可以得到。(但是还是不要乱变为好,稍不小心就会 1 + 1 = 3 1+1=3 1+1=3。)

第二种:类似,相信读者可以自己证明。

无理数危机

    • Question: 4 = ? \sqrt{4}=? 4 =?
    • Answer: 2 2 2,显然 2 2 = 4 2^2=4 22=4
    • Question: 2.25 = ? \sqrt{2.25}=? 2.25 =?
    • Answer: 1.5 1.5 1.5,稍加注意可得 1. 5 2 = 2.25 1.5^2=2.25 1.52=2.25
    • Question: 13 , 113 , 500 , 165.06132470436100 = ? \sqrt{13,113,500,165.06132470436100}=? 13,113,500,165.06132470436100 =?
    • Answer: 114 , 514.1919810 114,514.1919810 114,514.1919810,与上一题性质一样,Attention is all you need.
    • Question: 2 = ? \sqrt{2}=? 2 =?
    • Answer: 2 \sqrt{2} 2 ,政治家的智慧。

最后一个问题,你不是来搞笑的? 2 = 2 \sqrt{2}=\sqrt{2} 2 =2

其实, 2 \sqrt{2} 2 你还真没办法算出来,你随便给我个小数,甚至分数(别来 2 1 \dfrac{\sqrt{2}}{1} 12 之类的)我都能告诉你大了还是小了,比如 1.41421356237309504880168872420 1.41421356237309504880168872420 1.41421356237309504880168872420 1.4142135623730950488016887242 0 2 ≈ 1.9999999999999999999999999999726 1.41421356237309504880168872420^2 \approx 1.9999999999999999999999999999726 1.4142135623730950488016887242021.9999999999999999999999999999726,所以 1.41421356237309504880168872420 1.41421356237309504880168872420 1.41421356237309504880168872420 小了。又比如 1.4142135623730950488016887242 1 2 ≈ 2.0000000000000000000000000000009 1.41421356237309504880168872421^2 \approx 2.0000000000000000000000000000009 1.4142135623730950488016887242122.0000000000000000000000000000009(不是浮点误差),所以 1.41421356237309504880168872421 1.41421356237309504880168872421 1.41421356237309504880168872421 大了(虽然平时 1.414 1.414 1.414 完全够用)。如果你找到了一个有限小数,无限循环小数或分子分母均为整数的数,觉得它就是 2 \sqrt{2} 2 ,欢迎来告诉我 ,我可以帮你发论文

综上, 2 \sqrt{2} 2 无法被平常的方式所表示,那就让只能它是 2 \sqrt{2} 2 ,它在数轴上的位置也很好确定,就在 1 1 1 2 2 2 之间(也在我刚刚说的两个数之间)。

负数?

我们可以发现,任何实数的平方都是非负数。

那么如果出现了 − 114514 \sqrt{-114514} 114514 之类的数,怎么办呢?

我们发现,怎么找都找不到一个数,它的平方是 − 114514 -114514 114514。并且理论上来说有两个数的平方都是 114514 114514 114514

难不成这是一个像 0 0 \dfrac{0}{\color{red}{0}} 00 一样的,无解问题?(声明一句,这个也不是无解,答案是 ∞ \infty 。)

但是,政治家的智慧是无穷的:

既然我们找不到,那我们不妨定义一个?

于是我们定义 − 1 \sqrt{-1} 1 i i i(之所以不定义 − 114514 \sqrt{-114514} 114514 i i i,是因为 − 114514 \sqrt{-114514} 114514 就是 114514 × − 1 \sqrt{114514} \times \sqrt{-1} 114514 ×1 )。

这里 i i i 也叫虚数单位

note:其实教科书上的定义为 i 2 = − 1 i^2=-1 i2=1,但是这样就有两个满足条件的 i i i 了,所以我不是很喜欢。当然考试中问 i i i 的定义不要听我的。

但是, i i i 究竟是哪种数呢?

答案是:虚数

与其说 i i i 是虚数,不如说虚数都是由 i i i 定义出来的。

所有虚数都可以表示为 b i bi bi,其中 b b b 是某个实数,比如 114514.1919810 114514.1919810 114514.1919810

那么,如果我们让虚数和实数相加,会发生什么呢?会出现 a + b i a+bi a+bi,并且无法化简(除非 a b = 0 ab=0 ab=0),这种数就叫做 复数

现在知道 实数 的名称由来了吧,和虚数相对的数。

所以, i i i 在数轴上该如何表示呢?

找不到啊!

于是某人 (我) 就提出了一个天才的想法:

一个数乘上 − 1 -1 1 就相当于把它在数轴上的位置逆时针旋转了 18 0 ∘ 180^\circ 180,跑到了另一边。那么显而易见,乘两次 − 1 -1 1 就相当于旋转了两次 18 0 ∘ 180^\circ 180,旋转了 36 0 ∘ 360^\circ 360,相当于没旋转。

所以显而易见,由于 i 2 = − 1 i^2=-1 i2=1,可得,一个数旋转两次 i i i,就相当于旋转了一次 − 1 -1 1(抽象),就是旋转两次乘 i i i 旋转的角度,相当于旋转一次 18 0 ∘ 180^\circ 180

所以说,旋转两次 i i i,相当于旋转 18 0 ∘ 180^\circ 180,显然,乘上 i i i 所旋转的角度就是 9 0 ∘ 90^\circ 90

我们就这样知道了 i i i 在数轴的哪里:在数轴的上空。

            |3i
            |2i
            |i
-4 -3 -2 -1 |0 1  2  3  4
------------+------------
            |-i
            |-2i
            |-3i

我们不妨再野蛮一点(不太写的下了!放图片吧)

pAelBVJ.png

很好理解, + 1 +1 +1 相当于往右走一格, − 1 -1 1 相当于往左走一格, + i +i +i 相当于往上走一格, − i -i i 相当于往下走一格。

但是这东西,还能叫数轴吗……

称其为 复平面 真是再好不过。既体现出上面有复数,又体现出这是一个平面。

短暂的休息 - 小小地总结

平方,就是一个数乘自己,一个实数的平方永远是非负数。

平方根,就是平方的逆运算。

虚数,就是负数的平方根,表示为 b i bi bi

虚数单位,就是 i = − 1 i=\sqrt{-1} i=1

实数,就是没有 i i i 的数(说了跟没说一样),表示为 a a a

复数,就是 实数 + 虚数 \texttt{实数} + \texttt{虚数} 实数+虚数,表示为 a + b i a+bi a+bi

复平面,就是扩充后的数轴,原本数轴上只有实数,现在多了虚数乃至复数。

休息够了吗? ℵ 114514 \aleph_{114514} 114514 则运算,启动!!!

复数运算

求模长

一个复数可以看成复平面上的一个点。

而这个复数的模长可以看成这个点到原点( 0 0 0 点)的距离。

勾股定理可得,一个复数 a + b i a+bi a+bi 的模长为 a 2 + b 2 \sqrt{a^2+b^2} a2+b2

求幅角

一个复数不仅可以看做复平面上的一个点,还可以看做复平面上的一个向量(箭头),从原点指向它代表的点。

而幅角就是角度,比如 − 1 -1 1 的角度就是 18 0 ∘ 180^\circ 180 i i i 的角度就是 9 0 ∘ 90^\circ 90

显然,一个向量的幅角就是 arctan ⁡ b a \arctan{\dfrac{b}{a}} arctanab

如果 a a a 0 0 0,此时看 b b b,如果 b b b 为正,则幅角位 9 0 ∘ 90^\circ 90。如果 b b b 为负,则幅角为 − 9 0 ∘ -90^\circ 90

所以

知道了一个复数的模长和幅角,就可以知道这个复数的值。就像你知道了向哪边走,走多远就可以知道目的地是哪里。

如果模长为 x x x,幅角为 y y y,则复数为:

x cos ⁡ y + x sin ⁡ y i \frac{x}{\cos y}+\frac{x}{\sin y}i cosyx+sinyxi

加法

众所周知 ( a + b i ) + ( c + d i ) = a + b i + c + d i = ( a + c ) + ( b + d ) i (a+bi)+(c+di)=a+bi+c+di=(a+c)+(b+d)i (a+bi)+(c+di)=a+bi+c+di=(a+c)+(b+d)i

我们来做个练习吧。

( 1 + 2 i ) + ( 3 + 4 i ) = ? (1+2i)+(3+4i)=? (1+2i)+(3+4i)=?

( 114 + 514 i ) + ( 1919 + 810 i ) = ? (114+514i)+(1919+810i)=? (114+514i)+(1919+810i)=?

减法

有什么区别呢?

( 3 + 2 i ) − ( 4 + i ) = ? (3+2i)-(4+i)=? (3+2i)(4+i)=?

( 114 + 514 i ) − ( 1919 + 810 i ) = ? (114+514i)-(1919+810i)=? (114+514i)(1919+810i)=?

乘法

推一推吧~

( a + b i ) × ( c + d i ) = a c + a d i + b c i + b d i 2 = a c + ( a d + b c ) i + ( − 1 ) b d = ( a c − b d ) + ( a d + b c ) i \begin{aligned} &(a+bi) \times (c+di) \\ =&ac+adi+bci+bdi^2 \\ =&ac+(ad+bc)i+(-1)bd \\ =&(ac-bd)+(ad+bc)i \end{aligned} ===(a+bi)×(c+di)ac+adi+bci+bdi2ac+(ad+bc)i+(1)bd(acbd)+(ad+bc)i

练习:

( 1 + i ) ( 2 − 3 i ) = ? (1+i)(2−3i)=? (1+i)(23i)=?

( 2 − i ) ( 3 − 2 i ) = ? (2-i)(3-2i)=? (2i)(32i)=?

( 5 − 2 i ) 3 = ? (5-2i)^3=? (52i)3=?

Attention is all you need.(前方高能警告)

原两个复数的模长分别是:

  1. a 2 + b 2 \sqrt{a^2+b^2} a2+b2
  2. c 2 + d 2 \sqrt{c^2+d^2} c2+d2

乘积为:
( a 2 + b 2 ) ( c 2 + d 2 ) = a 2 c 2 + b 2 d 2 + a 2 d 2 + b 2 c 2 \begin{aligned} &\sqrt{(a^2+b^2)(c^2+d^2)} \\ =&\sqrt{a^2c^2+b^2d^2+a^2d^2+b^2c^2} \end{aligned} =(a2+b2)(c2+d2) a2c2+b2d2+a2d2+b2c2

新复数的模长为:
( a c − b d ) 2 + ( a d + b c ) 2 = a 2 c 2 + b 2 d 2 − 2 a b c d + a 2 d 2 + b 2 c 2 + 2 a b c d = a 2 c 2 + b 2 d 2 + a 2 d 2 + b 2 c 2 \begin{aligned} &\sqrt{(ac-bd)^2+(ad+bc)^2} \\ =&\sqrt{a^2c^2+b^2d^2-2abcd+a^2d^2+b^2c^2+2abcd} \\ =&\sqrt{a^2c^2+b^2d^2+a^2d^2+b^2c^2} \end{aligned} ==(acbd)2+(ad+bc)2 a2c2+b2d22abcd+a2d2+b2c2+2abcd a2c2+b2d2+a2d2+b2c2

两数完全相同。

原两个复数的幅角为:

  1. arctan ⁡ b a \arctan{\dfrac{b}{a}} arctanab
  2. arctan ⁡ d c \arctan{\dfrac{d}{c}} arctancd

和为:

arctan ⁡ b a + arctan ⁡ d c = arctan ⁡ b a + d c ( 1 − b d a c ) = arctan ⁡ b c + a d a c a c − b d a c = arctan ⁡ a d + b c a c − b d \begin{aligned} &\arctan{\dfrac{b}{a}}+\arctan{\dfrac{d}{c}} \\ =&\arctan{\dfrac{\frac{b}{a} + \frac{d}{c}}{(1 - \frac{bd}{ac})}} \\ =&\arctan{\dfrac{\frac{bc+ad}{ac}}{\frac{ac-bd}{ac}}} \\ =&\arctan{\dfrac{ad+bc}{ac-bd}} \end{aligned} ===arctanab+arctancdarctan(1acbd)ab+cdarctanacacbdacbc+adarctanacbdad+bc

新向量的幅角为:
arctan ⁡ a d + b c a c − b d \arctan{\dfrac{ad+bc}{ac-bd}} arctanacbdad+bc

两数完全相同。

所以,复数加法遵循着另一个规则:模长相乘,幅角相加。

除法

a + b i c + d i = ( a + b i ) ( c − d i ) ( c + d i ) ( c − d i ) = ( a c + b d ) + ( b c − a d ) i c 2 − ( d i ) 2 = ( a c + b d ) + ( b c − a d ) i c 2 + d 2 = a c + b d c 2 + d 2 + b c − a d c 2 + d 2 i \begin{aligned} &\dfrac{a+bi}{c+di}\\ =&\dfrac{(a+bi)(c-di)}{(c+di)(c-di)} \\ =&\dfrac{(ac+bd)+(bc-ad)i}{c^2-(di)^2} \\ =&\dfrac{(ac+bd)+(bc-ad)i}{c^2+d^2} \\ =&\dfrac{ac+bd}{c^2+d^2}+\dfrac{bc-ad}{c^2+d^2}i \end{aligned} ====c+dia+bi(c+di)(cdi)(a+bi)(cdi)c2(di)2(ac+bd)+(bcad)ic2+d2(ac+bd)+(bcad)ic2+d2ac+bd+c2+d2bcadi

看起来有点复杂,我们要验算一下(前方高能警告):

( a c + b d c 2 + d 2 + b c − a d c 2 + d 2 i ) ( c + d i ) = a c 2 + b c d c 2 + d 2 + a c d + b d 2 c 2 + d 2 i + b c 2 − a c d c 2 + d 2 i − b c d − a d 2 c 2 + d 2 = a c 2 + b c d − b c d + a d 2 c 2 + d 2 + a c d + b d 2 + b c 2 − a c d c 2 + d 2 i = a ( c 2 + d 2 ) c 2 + d 2 + b ( c 2 + d 2 ) c 2 + d 2 i = a + b i \begin{aligned} &(\dfrac{ac+bd}{c^2+d^2}+\dfrac{bc-ad}{c^2+d^2}i)(c+di) \\ =&\dfrac{ac^2+bcd}{c^2+d^2}+\dfrac{acd+bd^2}{c^2+d^2}i+\dfrac{bc^2-acd}{c^2+d^2}i-\dfrac{bcd-ad^2}{c^2+d^2} \\ =&\dfrac{ac^2+bcd-bcd+ad^2}{c^2+d^2}+\dfrac{acd+bd^2+bc^2-acd}{c^2+d^2}i \\ =&\dfrac{a(c^2+d^2)}{c^2+d^2}+\dfrac{b(c^2+d^2)}{c^2+d^2}i\\ =&a+bi \end{aligned} ====(c2+d2ac+bd+c2+d2bcadi)(c+di)c2+d2ac2+bcd+c2+d2acd+bd2i+c2+d2bc2acdic2+d2bcdad2c2+d2ac2+bcdbcd+ad2+c2+d2acd+bd2+bc2acdic2+d2a(c2+d2)+c2+d2b(c2+d2)ia+bi

验算完毕。

题不想出了。

平方

自己乘自己,so eazy,不过还是把公式推一推。

( a a − b b ) + ( a b + b a ) i = ( a 2 − b 2 ) + 2 a b i \begin{aligned} &(aa-bb)+(ab+ba)i \\ =&(a^2-b^2)+2abi \end{aligned} =(aabb)+(ab+ba)i(a2b2)+2abi
战斗结束。

中场休息

以下默认是 a + b i a+bi a+bi a + b i a+bi a+bi c + d i c+di c+di 的运算。

模长: a 2 + b 2 \sqrt{a^2+b^2} a2+b2

幅角: { arctan ⁡ b a a ≠ 0 9 0 ∘ a = 0 ∧ b > 0 − 9 0 ∘ a = 0 ∧ b < 0 11451 4 ∘ a = 0 ∧ b = 0 \begin{cases} \arctan{\dfrac{b}{a}}&a\neq0 \\ 90^\circ&a=0 \land b>0 \\ -90^\circ&a=0\land b<0 \\ 114514^\circ&a=0\land b=0 \end{cases} arctanab9090114514a=0a=0b>0a=0b<0a=0b=0

(最后一个开玩笑的,未定义)。

模长为 x x x,幅角为 y y y,则复数为:$ \dfrac{x}{\cos y}+\dfrac{x}{\sin y}i $

加法: ( a + c ) + ( b + d ) i (a+c)+(b+d)i (a+c)+(b+d)i

减法: ( a − c ) + ( b − d ) i (a-c)+(b-d)i (ac)+(bd)i

乘法: ( a c − b d ) + ( a d + b c ) i (ac-bd)+(ad+bc)i (acbd)+(ad+bc)i 且模长相乘,幅角相加。

除法: a c + b d c 2 + d 2 + b c − a d c 2 + d 2 i \dfrac{ac+bd}{c^2+d^2}+\dfrac{bc-ad}{c^2+d^2}i c2+d2ac+bd+c2+d2bcadi

平方: ( a 2 − b 2 ) + 2 a b i (a^2-b^2)+2abi (a2b2)+2abi

最后的拓展:欧拉公式

e i θ = cos ⁡ θ + i sin ⁡ θ e^{i\theta}=\cos\theta+i\sin\theta eiθ=cosθ+isinθ

详见 ggb,点击 n n n 右下角的箭头。(为了不重叠, e i θ e^{i\theta} eiθ 向左平移 1 1 1 cos ⁡ θ + i sin ⁡ θ \cos\theta+i\sin\theta cosθ+isinθ 向右平移 1 1 1)。

据说当初是欧拉瞪眼法瞪出来的,注意力惊人!

e x = 1 + x 1 ! + x 2 2 ! + x 3 3 ! + ⋯ = lim ⁡ n → ∞ ∑ i = 0 n x i i ! e^x=1+\dfrac{x}{1!}+\dfrac{x^2}{2!}+\dfrac{x^3}{3!}+\cdots=\lim\limits_{n\to\infty}\sum_{i=0}^{n}\dfrac{x^i}{i!} ex=1+1!x+2!x2+3!x3+=nlimi=0ni!xi

sin ⁡ x = x 1 ! − x 3 3 ! + x 5 5 ! − x 7 7 ! + ⋯ = lim ⁡ n → ∞ ∑ i = 0 n ( − 1 ) i × x 2 i + 1 ( 2 i + 1 ) ! \color{red}\sin x=\dfrac{x}{1!}-\dfrac{x^3}{3!}+\dfrac{x^5}{5!}-\dfrac{x^7}{7!}+\cdots=\lim\limits_{n \to \infty}\sum_{i=0}^{n}(-1)^i \times \dfrac{x^{2i+1}}{(2i+1)!} sinx=1!x3!x3+5!x57!x7+=nlimi=0n(1)i×(2i+1)!x2i+1

cos ⁡ x = 1 − x 2 2 ! + x 4 4 ! − x 6 6 ! = lim ⁡ n → ∞ ∑ i = 0 n ( − 1 ) i × x 2 i ( 2 i ) ! \color{blue}\cos x=1-\dfrac{x^2}{2!}+\dfrac{x^4}{4!}-\dfrac{x^6}{6!}=\lim\limits_{n \to \infty}\sum_{i=0}^{n}(-1)^i \times \dfrac{x^{2i}}{(2i)!} cosx=12!x2+4!x46!x6=nlimi=0n(1)i×(2i)!x2i

然后就是欧拉的瞪眼:

sin ⁡ x + cos ⁡ x = 1 − x 1 ! − x 2 2 ! + x 3 3 ! + x 4 4 ! − ⋯ \color{red}\sin x+\color{blue}\cos x\color{black}=\color{blue}1\color{red}-\dfrac{x}{1!}\color{blue}-\dfrac{x^2}{2!}\color{red}+\dfrac{x^3}{3!}\color{blue}+\dfrac{x^4}{4!}\color{red}-\cdots sinx+cosx=11!x2!x2+3!x3+4!x4

当时复数还没有特别普及,但是欧拉显然知道这一点,所以欧拉:

sin ⁡ i x + cos ⁡ i x = 1 − i x 1 ! + x 2 2 ! − i x 3 3 ! + x 4 4 ! + ⋯ \color{red}\sin ix+\color{blue}\cos ix\color{black}=\color{blue}1\color{red}-\dfrac{ix}{1!}\color{blue}+\dfrac{x^2}{2!}\color{red}-\dfrac{ix^3}{3!}\color{blue}+\dfrac{x^4}{4!}\color{red}+\cdots sinix+cosix=11!ix+2!x23!ix3+4!x4+

发现出现了复数,继续:

i sin ⁡ i x + cos ⁡ i x = 1 + x 1 ! + x 2 2 ! + x 3 3 ! + x 4 4 ! + ⋯ = e x i\color{red}\sin ix+\color{blue}\cos ix\color{black}=\color{blue}1\color{red}+\dfrac{x}{1!}\color{blue}+\dfrac{x^2}{2!}\color{red}+\dfrac{x^3}{3!}\color{blue}+\dfrac{x^4}{4!}\color{red}+\cdots\color{black}=e^x isinix+cosix=1+1!x+2!x2+3!x3+4!x4+=ex

但是在 sin ⁡ \sin sin cos ⁡ \cos cos 的参数里面出现复数不太好,但是可以加到 e x e^x ex 中,令 θ = i x \theta=ix θ=ix

i sin ⁡ θ + cos ⁡ θ = e i θ i\sin \theta+\cos \theta=e^{i\theta} isinθ+cosθ=eiθ

证明结束!

return 0;
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值