- 博客(8)
- 收藏
- 关注
原创 机器学习——主成分分析(PCA)
目录一:概述1.1原理与核心思想1.2应用场景二:PCA基本步骤三:利用PCA进行人脸识别一:概述1.1原理与核心思想PCA是Principal Component Analysis的缩写,主成分分析的目的是通过线性变换将原始数据变换为一组各维度线性无关的表示,这些表示被称为主成分。主成分分析的原理是通过找到数据中方差最大的方向,将数据投影到这个方向上,从而实现数据的降维。PCA的核心思想是通过特征值分解或奇异值分解来找到数据的主成分,从而实现数据的
2023-12-19 18:02:26 1452 1
原创 机器学习——支持向量机
支持向量机(Support Vector Machines, SVM)是一种二分类模型,它的基本模型是定义在特征空间上的间隔最大的线性分类器;SVM的主要思想是通过在特征空间中找到一个最优的超平面来进行分类或回归,这个超平面可以将不同类别的样本分离开来,并且使得离超平面最近的一些样本点到超平面的距离最大化,这些最靠近超平面的样本点被称为“支持向量”。SVM还包括核函数,这使它成为实质上的非线性分类器。
2023-12-18 22:11:01 932 1
原创 logistic回归
Logistic回归是一种常用的分类算法,适用于解决二分类问题。其优点是计算代价不高,易于理解实现,缺点是容易欠拟合,分类精度可能不高,适用的数据类型有数值型和标称型数据...+bb。
2023-12-04 21:42:16 48
原创 机器学习——朴素贝叶斯
利用朴素贝叶斯算法实现垃圾邮件分类的好处就是朴素贝叶斯模型发源于古典数学理论,有着坚实的数学基础,以及稳定的分类效率,并且算法也比较简单,容易实现,对于小规模的数据效果很不错。但其缺点也是十分明显的,我们在显示生活中的各个特征并不一定是相互独立的,而且这种方法一定要事先知道先验概率。同时,朴素贝叶斯算法对于数据中的噪声和特征缺失比较敏感。在实际应用中,需要对数据进行预处理、特征选择和特征工程等步骤,以提高分类器的性能。
2023-11-20 21:59:44 69 1
原创 机器学习——决策树
悲观剪枝(Pessimistic Error Pruning):悲观剪枝是一种基于错误率的剪枝方法,它假设剪枝后的性能不会好于剪枝前。代价复杂性剪枝(Cost-Complexity Pruning):代价复杂性剪枝是一种基于代价复杂性的剪枝方法,它考虑到模型的复杂度和性能之间的权衡。预剪枝(Pre-pruning):预剪枝是在决策树构建的过程中,在进行节点分裂前就停止分裂的策略。均方差主要应用于回归问题中。分析:得到该结果的原因是选取的数据中不一样的很多,这导致得到的决策树没有较好的泛化能力。
2023-11-06 22:11:53 101
原创 机器学习——模型评估
机器学习模型评估是评估模型性能的过程,是机器学习的核心环节之一。其主要目的是通过使用某些评估指标来评估模型的预测能力,并且确定哪个模型最适合特定的数据集。机器其学习中常见的两类问题有分类问题和回归问题,其中,分类问题主要使用精确率,召回率,F分数等进行评估,回归问题主要使用平均绝对误差,均方误差等方法。模型评估的指标多种多样,例如ROC曲线主要用于评估分类模型性能,因此我们在不同的场景下需要选取不同的模型评估指标。
2023-10-23 22:03:11 114
原创 机器学习——k近邻算法
KNN(K Near Neighbor):k个最近的邻居,即每个样本都可以用它最接近的k个邻居来代表。KNN算法是一种用于分类和回归的统计方法 ,可以说是最简单的分类算法之一。我的理解就是计算某给点到每个点的距离作为相似度的反馈。
2023-10-09 21:05:34 50
原创 机器学习实验一
链接:Free Download | Anaconda方法一:点击链接进入官网选择适合自己的版本下载即可方法二:觉得官网下载慢的可以去清华镜像站下载1.双击下载好的安装包2.点击next3.点击 I agree4.可以选择all users 然后点击next5.选择安装路径,建议选择c盘以外的盘6.只选择第二项的话需要我们再手动添加环境变量,所以为了方便我这里选择的是两个都勾。然后点击install,我们需要等待一些时间7.取消勾选并点击finish点击win+r 输入cmd在命令行输入conda检查con
2023-09-25 21:49:49 66 1
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人