绘制已知散点数据的pareto前沿

本文介绍了如何使用MATLAB对Isight软件生成的不美观的Pareto图进行数据处理和美化,通过导入Excel数据,进行排序和优化,最终得到更清晰的散点图表示最大应力和质量的关系。
摘要由CSDN通过智能技术生成

        本代码用于美化图片,用软件Isight进行多目标优化后,软件自带的最大应力与质量的pareto图不美观,可导出数据后用MATLAB实现。

clear;clc;
data=xlsread('E:\Finalthesis\图\pareto.xlsx','D4:E9604')%导入数据
A=sortrows(data,[1,2])%从小到大排序
z=size(A,1);
for i=1:z-1
    for j=i+1:z
    if A(j,2)>A(i,2)&&A(j,1)~=A(i,1)
        A(j,2)=NaN;
    end
    end   
    A=A(all(~isnan(A),2),:);
    z=size(A,1);
end
scatter(data(:,1),data(:,2),5,[0 0 0],"filled")
hold on
scatter(A(:,1),A(:,2),20,[0 0 1])
hold on
scatter(135.68,252.01,30,[1 0 0],"filled")%初始值
xlabel("最大应力/Mpa")
ylabel("质量/kg")


 

### 回答1: Pareto前沿是指在多目标优化问题中所有非支配解的集合,可以用matlab中的pareto函数来绘制Pareto前沿。下面是一个简单的示例: ```matlab % 假设有两个目标函数f1和f2,以及一些候选解x % 例如: f1 = [1 2 3 ### 回答2: 在Matlab中,可以使用“pareto”函数绘制Pareto前沿Pareto前沿是指在多目标优化问题中,无法通过改善一个目标而不损害其他目标的情况下,找到的最优解的集合。 要使用“pareto”函数绘制Pareto前沿,首先需要定义多个目标函数。假设我们有两个目标函数f1和f2,可以通过编写函数来表示它们。然后,我们可以将这些函数的值存储在一个矩阵中,每一行代表一个解的两个目标函数的值。 接下来,使用“pareto”函数对这个矩阵进行计算,找到Pareto前沿上的非劣解。函数调用的基本语法如下: [pFront,pIndex] = pareto(objectives) 其中,objectives是一个矩阵,每一行代表一个解的两个目标函数的值。pFront是一个矩阵,包含了Pareto前沿上的非劣解的目标函数值。pIndex是一个向量,包含了Pareto前沿上非劣解在objectives矩阵中的索引。 最后,使用“scatter”函数将Pareto前沿上的非劣解绘制出来。函数调用的基本语法如下: scatter(pFront(:,1),pFront(:,2)) 这将在图形窗口中绘制Pareto前沿上的非劣解的散点图,其中x轴表示f1目标函数的值,y轴表示f2目标函数的值。 需要注意的是,Matlab中的“pareto”函数只能处理2个目标函数的情况。如果有更多的目标函数,可以使用其他算法或自行实现。此外,还可以对Pareto前沿进行进一步的分析和优化,例如利用多目标优化算法求解更多的非劣解。 ### 回答3: 在MATLAB中,可以使用pareto函数来绘制Pareto前沿。以下是一个简单的步骤,用于绘制二维Pareto前沿: 1. 创建一个包含两列的矩阵,其中一列表示第一个目标函数的值,另一列表示第二个目标函数的值。 2. 使用pareto函数绘制Pareto前沿。语法为:pareto(matrix),其中matrix是包含目标函数值的矩阵。 3. 可以通过设置pareto函数的其他参数来自定义绘图。例如,可以使用pareto(matrix,'VariableNames',{'目标函数1','目标函数2'})来为横轴和纵轴设置自定义的标签。 4. 可以使用hold on命令来在同一图形窗口中绘制多个Pareto前沿。使用hold off命令来停止在同一图形窗口中绘制。 以下是一个使用MATLAB绘制Pareto前沿的示例代码: ```matlab % 创建一个包含两列的矩阵 matrix = [10 20; 15 25; 20 18; 25 12; 18 20; 22 15]; % 使用pareto函数绘制Pareto前沿 pareto(matrix); % 自定义标签 pareto(matrix,'VariableNames',{'目标函数1','目标函数2'}); ``` 以上代码将绘制一个有6个点的Pareto前沿,其中每个点表示不同的目标函数值。可以根据需要添加更多的点和自定义参数来绘制更复杂的Pareto前沿
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值