一、求两个数的最小公倍数的三种方法
方法一:【暴力求解法】
找出两个数的最大值,循环遍历,如果不是最小公倍数,则最大值加一,知道这个最大值能同时被a,b整除,循环结束。
代码实现:
#include <stdio.h>
int main()
{
int a = 0;
int b = 0;
scanf("%d %d", &a, &b);
int max = a > b ? a : b;//a,b最大值
while (1)
{
if (max % a == 0 && max % b == 0)
break;
max++;
}
printf("%d和%d的最小公倍数是:%d\n", a, b, max);
return 0;
}
方法二:
两个数的其中一个数,这个数的1倍能不能整除另一个数?如果不能,那这个数的2倍呢?3倍呢?
代码展示:
//求最小公倍数
#include <stdio.h>
//方法一:
int main()
{
int a = 0;
int b = 0;
scanf("%d %d", &a, &b);
int i = 1;
while (i*a %b != 0)
{
i++;
}
printf("%d和%d的最小公倍数是:%d\n", a, b, i*a);
return 0;
}
二、辗转相除法
方法三:【辗转相除法】
先求最大公因数,在求最小公倍数。
2.1 最大公因数
因数:因数又称约数。整数a除以整数b(b≠0)的商正好是整数而没有余数,我们就说b是a的因数。0不是0的因数。 若一整数能除尽另一整数,则前者称为后者的因数。
- 例如:
- 15的因数:1、3、5、15。也称为因子。
公因数:给定若干个整数,如果存在一些数是它们共同的因数,那么这些共同的因数就叫
做它们的公因数。因此最大公因数就是一个数的所有因数中,最大的那个因数就是最大公因数。
- 例如:
- 12的因数:1,2,3,4,6,12。
- 24的因数:1,2,3,4, 6,8,12,24。
- 12和24的最大公因数:12。
辗转相除法(欧几里得法)
原理:对于两个正整数a和b(其中a>b),它们的最大公约数等于b和a除以b的余数的最大公约数。
- 具体步骤如下:
-
- 将较大的数记为a,较小的数记为b。
-
- 用a除以b,得到商q和余数r。
-
- 如果r等于0,则b即为所求的最大公约数。
-
- 如果r不等于0,则将b赋值给a,将r赋值给b,然后返回步骤2。
通过不断迭代以上步骤,直到余数为0,就可以得到最大公约数。欧几里得算法是一种高效且常用的求解最大公约数的方法,常被用于解决各种数学和计算机科学问题。
最小公倍数等于两个数相乘除以最大公约数。
//欧几里得算法,辗转相除法
#include <stdio.h>
//求最大公约数
int gcd(int a, int b)
{
int r = 0;
while (r = a % b)
{
a = b;
b = r;
}
return b;
}
int main()
{
int a = 0;
int b = 0;
scanf("%d %d", &a, &b);
int x = gcd(a,b);//最大公约数
int y = a * b / x;//最小公倍数
printf("%d和%d的最大公约数是:%d\n", a, b, x);
printf("%d和%d的最小公倍数是:%d\n", a, b, y);
return 0;
}
递归实现:
#include <stdio.h>
int gcd2(int a, int b)
{
if (b == 0)
return a;
else
return gcd2(b, a % b);
}
int main()
{
int a = 0;
int b = 0;
scanf("%d %d", &a, &b);
//int x = gcd(a,b);//最大公约数
int x = gcd2(a,b);//最大公约数
int y = a * b / x;//最小公倍数
printf("%d和%d的最大公约数是:%d\n", a, b, x);
printf("%d和%d的最小公倍数是:%d\n", a, b, y);
return 0;
}
三目运算符递归简化代码
int gcd3(int a, int b)
{
return !b ? a : gcd3(b, a % b);
}
总结
辗转相除法,循环/递归时的结束条件:当余数为0时,循环/递归结束。