【辗转相除法】求两个数的最大公因数和最小公倍数

本文介绍了三种求解两个数最小公倍数的方法:暴力求解、辗转相除法(包括欧几里得算法和递归实现),以及最大公约数的概念及其在计算最小公倍数中的应用。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >


一、求两个数的最小公倍数的三种方法

方法一:【暴力求解法】
找出两个数的最大值,循环遍历,如果不是最小公倍数,则最大值加一,知道这个最大值能同时被a,b整除,循环结束。
代码实现:

#include <stdio.h>

int main()
{
	int a = 0;
	int b = 0;
	scanf("%d %d", &a, &b);
	int max = a > b ? a : b;//a,b最大值
	while (1)
	{
		if (max % a == 0 && max % b == 0)
			break;
		max++;
	}
	printf("%d和%d的最小公倍数是:%d\n", a, b, max);

	return 0;
}

方法二:
两个数的其中一个数,这个数的1倍能不能整除另一个数?如果不能,那这个数的2倍呢?3倍呢?

代码展示:

//求最小公倍数
#include <stdio.h>

//方法一:
int main()
{
	int a = 0;
	int b = 0;
	scanf("%d %d", &a, &b);
	int i = 1;
	while (i*a %b != 0)
	{
		i++;
	}
	printf("%d和%d的最小公倍数是:%d\n", a, b, i*a);

	return 0;
}

二、辗转相除法

方法三:【辗转相除法】
先求最大公因数,在求最小公倍数。

2.1 最大公因数

因数:因数又称约数。整数a除以整数b(b≠0)的商正好是整数而没有余数,我们就说b是a的因数。0不是0的因数。 若一整数能除尽另一整数,则前者称为后者的因数。

  • 例如:
  • 15的因数:1、3、5、15。也称为因子。

公因数:给定若干个整数,如果存在一些数是它们共同的因数,那么这些共同的因数就叫
做它们的公因数。因此最大公因数就是一个数的所有因数中,最大的那个因数就是最大公因数。

  • 例如:
  • 12的因数:1,2,3,4,6,12。
  • 24的因数:1,2,3,4, 6,8,12,24。
  • 12和24的最大公因数:12。

辗转相除法(欧几里得法)
原理:对于两个正整数a和b(其中a>b),它们的最大公约数等于b和a除以b的余数的最大公约数。

  • 具体步骤如下:
    1. 将较大的数记为a,较小的数记为b。
    1. 用a除以b,得到商q和余数r。
    1. 如果r等于0,则b即为所求的最大公约数。
    1. 如果r不等于0,则将b赋值给a,将r赋值给b,然后返回步骤2。

通过不断迭代以上步骤,直到余数为0,就可以得到最大公约数。欧几里得算法是一种高效且常用的求解最大公约数的方法,常被用于解决各种数学和计算机科学问题。

最小公倍数等于两个数相乘除以最大公约数。

//欧几里得算法,辗转相除法
#include <stdio.h>

//求最大公约数
int gcd(int a, int b)
{
	int r = 0;
	while (r = a % b)
	{
		a = b;
		b = r;
	}
	return b;
}

int main()
{
	int a = 0;
	int b = 0;
	scanf("%d %d", &a, &b);

	int x = gcd(a,b);//最大公约数
	int y = a * b / x;//最小公倍数
	printf("%d和%d的最大公约数是:%d\n", a, b, x);
	printf("%d和%d的最小公倍数是:%d\n", a, b, y);

	return 0;
}


在这里插入图片描述

递归实现:

#include <stdio.h>

int gcd2(int a, int b)
{
	if (b == 0)
		return a;
	else
		return gcd2(b, a % b);
}

int main()
{
	int a = 0;
	int b = 0;
	scanf("%d %d", &a, &b);

	//int x = gcd(a,b);//最大公约数
	int x = gcd2(a,b);//最大公约数
	int y = a * b / x;//最小公倍数
	printf("%d和%d的最大公约数是:%d\n", a, b, x);
	printf("%d和%d的最小公倍数是:%d\n", a, b, y);

	return 0;
}

三目运算符递归简化代码

int gcd3(int a, int b)
{
	return !b ? a : gcd3(b, a % b);
}

总结

辗转相除法,循环/递归时的结束条件:当余数为0时,循环/递归结束。

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值