图解辗转相除法(欧几里得算法)求解最大公约/最小公倍数

144 篇文章 19 订阅
52 篇文章 1 订阅

在几何原本卷十命题三中,已知两个可公度的量,计算它们的最大公度量,欧几里得给出了递归解法:

gcd(a,b)=\left\{\begin{matrix} a \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ a = b\\ gcd(a-b, b) \ \ \ b < a\\ gcd(a, b-a)\ \ \ a<b \end{matrix}\right.

设两条线段a,b可公度,如果它们相等,则最大公度就是其中任意一条线段,此时算法返回a作为结果,如果线段a比b长,就用圆规不断从a中截去b,然后求截端后的线段a'和b的最大公度,如果线段b比a长,就反过来不断从b中截去a,然后求截端后的线段b'和a的最大公度.

由于a<b时,a mod b = a,公式可以进一步写成:

gcd(a, b)=\left\{\begin{matrix} a , \ \ \ \ \ \ b=0\\ gcd(b, a\ mod\ b) \end{matrix}\right.

示意如下:

程序实现

gcd(a, b)=  gcd(b, a % b)=  gcd(a%b, b %(a%b)) ....

先上辗转相除法(欧几里得算法)的三种代码实现:

#include <stdio.h>
#include <stdlib.h>

int gcd1(int a, int b)
{
    int ret;

    while(1)
    {
        if(a >= b)
        {
            a = a%b;
            if(a == 0)
            {
                ret = b;
                break;
            }
        }
        else
        {
            b = b %a;
            if(b == 0)
            {
                ret = a;
                break;
            }
        }
    }

    return ret;
}

int gcd2(int a,int b)
{
    if(b == 0)
        return a;
    return gcd2(b,a%b);
}

int gcd3(int a,int b)
{
    while(b){
        int t = b;
        b = a%b;
        a = t;
    }
    return a;
} 

int main(void)
{
    int a, b;
    
    a= 100;
    b = 45;

    printf("%s line %d, res1 %d, res2 %d, res3 %d.\n", __func__, __LINE__, gcd1(a, b), gcd2(a, b), gcd3(a, b));

    return 0;
}

下面用一幅图示解题过程,图中蓝色的矩形单元表示一个最小公约的单元。它具有以下性质:

1.以最小公约表示的两个原数字互质。(这是必然,反证法,如果不互质,则可以提取一个共同的因子重新定义最小公约单元,直到表示为互质,比如图中的8和3互质)。

2.辗转相除的每个阶段的两个数字也均互质,证明过程类似,反正法即可(当前辗转阶段如果存在共同的约数,则必然传递到之前的阶段也都有同样的约数,所以同理最小公约单元也要重新定义,直到每级辗转互质)。

基于以上两个严密的逻辑,辗转相除一定能够找到组成两个数字的最基本的公约块儿,它是两个数字共有的零件。

扩展-求最小公倍数

既然上一步已经计算得到了最小公约数,并且得到了以最小公约表示的两个原数字互质的推论,就不难得到计算最小公倍数的公用公式。

通用算法,已知数字m,n的最大公约数是g,则m/g, n/g互质,两个互质的数的最小公倍数就是两个质数之积,所以,最小公倍数为

\frac{m}{g}\cdot \frac{n}{g} = \frac{mn}{g^2}

由于单元为g,所以最小公倍数的真实值为:

\frac{m}{g}\cdot \frac{n}{g}\cdot g = \frac{mn}{g^2}\cdot g = \frac{mn}{g}

#include <stdio.h>
#include <stdlib.h>

int gcd1(int a, int b)
{
    int ret;

    while(1)
    {
        if(a >= b)
        {
            a = a%b;
            if(a == 0)
            {
                ret = b;
                break;
            }
        }
        else
        {
            b = b %a;
            if(b == 0)
            {
                ret = a;
                break;
            }
        }
    }

    return ret;
}

int gcd2(int a,int b)
{
    if(b == 0)
        return a;
    return gcd2(b,a%b);
}

int gcd3(int a,int b)
{
    while(b){
        int t = b;
        b = a%b;
        a = t;
    }
    return a;
} 

int lcm1(int a, int b)
{
	int g_c_d = gcd1(a, b);

	return a*b/g_c_d;
}

int lcm2(int m, int n)
{
	int mn, r ;
	
	if(m<n){
		mn = m ; 
		m = n ; 
		n = mn;
	}
	
	mn = m * n ;//俩个数的乘积
	r = m % n ;
	while(r!=0){
		m = n ;
		n = r ;
		r = m % n ;
	}
	return mn/n; //n为最大公约数
}

int main(void)
{
    int a, b;
    
    a= 100;
    b = 45;

    printf("%s line %d, res1 %d, res2 %d, res3 %d, lcm1 %d, lcm2 %d.\n", __func__, __LINE__, gcd1(a, b), gcd2(a, b), gcd3(a, b), lcm1(a, b), lcm2(a,b));

    return 0;
}
main line 84, res1 5, res2 5, res3 5, lcm1 900, lcm2 900.

图解:

LCM of 32, 48 and 72 = 2 × 2 × 2 × 2 × 2 × 3 × 3 = 288

关于两个互质数的最小公倍数是两数之积,可以证明如下,假设a,b两数互质,也就是两数没有1以外的公约数,则最小公倍数是axb.

不失一般情况,假设a<b,则a的倍数从小到大排列为a,2a,3a,......(b-1)a, ba;在ba之前的所有a的倍数中,假设ka(1<k<b)同样也是b的倍数,则

\frac{ka}{b}

是整数。

由于a,b互质,则a/b不可能存在导致结果为整数的因子,所以只有k存在这个因子,但是k小于b,所以同样得到结论,这样的K不存在,这样,最小的公倍数只能是ab了,结论得证。

或者用反证法,我们知道ab一定是公倍数,要证明是最小,其它公倍数对最小公倍数之间一定可以整除(其他公倍数之间不一定),所以假设ab/n是其最小公倍数,则根据ab/n整除a,b可以推理出n是a,b的公因数,这和a,b互质矛盾。

上面那句虽然结论正确,但是推理显然是错误,反例如下40*5/25 = 8. 但是40和5任何一个都不能整除25,所以得不到ab/n整除,n是a,b公因数的结论.倒是可以证明:

ab/n为整数,则a,b一定不互质,因为假如a,b互质,则设m=ab,ab为m的一个质因数分解.根据算数基本定理,这个指因数分解唯一.如果存在c=ab/n=m/n,则必然存在m=cn,n小于a,b的情况下则m又引入了一个非a,b的因子n和c,不管n,c是质数还是合数,都违背了算数基本定理的唯一性要求.所以得证.

PS:

只有当a,c互质,且ab/c整除时,才能得出b/c整除的结论,40*5/25由于无论40或者5都和25不互素,所以,不适用于这个结论,无论40或者5都无法整除25.

关于这个定义,初等数论中的描述如下:

如果a,b和c是正整数,满足(a,b)=1.且a|bc,则a|c.

证明如下:

由于(a,b)=1,也就是a,b互素,存在整数x,y,使得ax+by=1,等式两边同时乘以c,得到acx+bcy=c.

由于bc能够整除a,所以a*cx+bc*y实际上是两个能够整除a的整数的线性组合(cx,y为系数),所以a*cx+bc*y也能够整除a. 而a*cx+bc*y等于什么呢?它就等于c,所以a|c. 结论得到证明。

或者通过欧几里德定理证明,素数的唯一分解角度:

(a,b)=1.且a|bc,如果将a,b,c三个数字进行欧几里德素数分解,则a,b互素,所以它们一定没有除1以外的共因子。 因此c必须包含所有a的素因子,并且唯一,因此a一定能够整除c.

总结:

基本原理:两个整数的最大公约数等于,其中较小的数和两数的差的最大公约数。

个人解析:若A、B有最大公约数K(A > B),则,A、B、(A - B)、A mod B(A / B的余数),都是K的倍数。即余数(A - B)和 B 的最大公公约数也是 K 。

由此递归,可知当 A mod B = 0,即 A 是 B 的倍数时,此时,B 即为 K 。实际上,存在如下定理:

两数最大公约数与最小公倍数的积等于两数之积,用公式表示就是:

gcd(p,q)\times lcm(p,q)=pq

gcd(p,q)=1

lcm(p,q)=pq

最大公因数*最小公倍数=pq。

这个证明过程也很简单,假设a,b互质,那么它们的最小公倍数是ab,最大公因数1,满足题设。

假如a,b不互质,则必然存在质数 p,q, (p,q)=1,s=gcd(a,b),使的a = sp,b=sq, s为整数。则最小公倍数为spq,最大公约数为s.同样满足题设。

这个证明需要的引理(p,q)=1,则lcm=pq,可以根据算数基本定理证明,(p,q)=1说明,p,q的素分解式中不存在相同的素数,否则,他们的(p,q)=1必定不成立(要么某个相同的素数,要么某几个相同的素数之积),所以,他们的lcm一定是所有p,q的素因子之积,而素因子又不存在交集,所以lcm一定是pxq.

图形化表示辗转相除获取最大公约数

证明: gcd(a,b) = gcd(b, a%b).

设c=gcd(a,b). 则:

a = mc

b = nc 

并且m,n互素(假如m,n有公因子,则一定可以抽取出来和c作乘积产生新的最大公约数,而前提我们已经设定c为最大公约了,所以一定有办法让m,n互素).

a=qb+r=>mc=qnc+r =>r=mc-qnc = (m-qn)c.

所以c仍然是a%b的因子。

又因为m-qn和n互素(证明如下,假如m-qn和n有非1公因子s,gcd(n, m-qn) = s, n=xs, m-qn=ys.

则,r=(m-qn)c = ysc, a=qxsc+ysc, b = xsc.所以a,b的公因子是少是sc而非c. 或者这样理解:

m-qn=x*s, n=y*s=>m=(qy+x)s,所以,m,n有公因子s,和m,n互素矛盾,所以m-qn和n互素)。

所以,b=nc和a%b=(m-qn)c的最大公因子也是c(否则n和m-qn一定能抽取另一个公因子和C相乘得到新的最大公因子,矛盾)。

所以, gcd(a,b) = gcd(b, a%b).b, a%b和a,b有相同的最大公因子。

从下图也可以看出,如果某级运算出现了新的更大的公约数,则这个公约数一定会反推回a,b,导致更新前提,所以GCD的运算会保持最大公约数不变。

下图展示了欧几里得算法的一个几何解释,反复剪掉正方形,用最终的小正方形铺满整个原图。

以上图形化证明过程的代码表达如下,设初始两个自然数为a,b, 并且a>b,b非0,可以证明存在两个唯一的整数 q 和 r,满足 a = q*b + r , q 为整数,且0 ≤ |r|< |d|。其中,q 被称为商,r 被称为余数,a,b分别被除数和除数,取余运算求取的就是这个余数r。

a=q_0b+r_0

b=q_1r_0+r_1

r_0=q_2r_1+r_2

r_1=q_3r_2+r_3

r_2=q_4r_3+r_4

r_3=q_5r_4+r_5

.........

r_{n-2}=q_{n}r_{n-1}+r_{n}

r_{n-1}=q_{n+1}r_{n}+r_{n+1}

r_n=q_{n+2}r_{n+1}+r_{n+2}

\mathbf{\textbf{}r_{n+1}=q_{n+3}r_{n+2}}

只要a,b是可公度的,这些式子不会无限列下去,从r0开始,每一步r(n+1)是r(n)的余数,r(n+1) < r(n),但是r0是自然数,起始值是有限的,所以这个过程不可能无限进行下去,最后一步总归能够整除,最后一步的除数r(n+2)就是最大公约数

b > r_0>r_1>r_2>\cdots>r_{n+2}>0

往回迭代:

r_n=q_{n+2}(q_{n+3}r_{n+2})+r_{n+2}

r_{n-1}=q_{n+1}q_{n+2}q_{n+3}r_{n+2}+q_{n+1}r_{n+2}+q_{n+3}r_{n+2}

\boldsymbol{r_{n-2}=q_nq_{n+1}q_{n+2}q_{n+3}r_{n+2}+q_nq_{n+1}r_{n+2}+q_nq_{n+3}r_{n+2}+q_{n+2}q_{n+3}r_{n+2}+r_{n+2}}

.........

b=q_1q_2...q_{n+3}r_{n+2} + ....(......+ ......)r_{n+2}

a=q_0q_1q_2...q_{n+3}r_{n+2} + ....(......+ ......)r_{n+2}

下一步证明,任何a,b的公度c,一定可以度量r(n+2).

由于c是公度,因此a,b都可以用它来表示,m,n为自然数

a=mc, b=nc

这样,上面的式子可以写成

a=q_0b+r_0

b=q_1r_0+r_1

mc=q_0nc+r_0

nc=q_1(m-nq_0)c+r_1

r_0=(m-nq_0)c

r_1=(n-q_1m+q_1q_0n)c

.....

所以,r0,r1,.....r(n),r(n+1), r(n+2)都可以由c来公度,所以r(n+2)是最大公度。

以本片开头的例子为例,计算110和24的最大公约数,a=110,b=24.

a=110,b=24.

110=4*24+14.

24=1*14+10.

14=1*10+4.

10=2*4+2.

4=2*2 + 0.

定理得证。

裴蜀定理

裴蜀定理(或贝祖定理)得名于法国数学家艾蒂安·裴蜀,说明了对任何整数a ,b 和它们的最大公约数d,关于未知数x和y 的线性不定方程(称为裴蜀等式):若a ,b 是整数,且gcd(a,b)=d,那么对于任意的整数x ,y , ax+by都一定是d的倍数,特别地,一定存在整数x,y,使ax+by=d成立,对于a,b互素的情况,一定存在x,y使的ax+by=1.

可以这样抽象理解,每次a mod b=m余r的过程,都是:

a-m_kb = r_k \\ \boldsymbol{b-m_{k+1}r_k=r_{k+1} = b-m_{k+1}(a-m_kb)=(1+m_{k+1}m_k)b-m_{k+1}a=r_{k+1}}

所以:

r_{k+1}=ax_{k+1}+by_{k+1}

r_{k+2}=ax_{k+2}+by_{k+2}

r_{k+3}=ax_{k+3}+by_{k+3}

.......

也就是说,通过GCD计算最大公约数的过程,就是计算a,b线性组合的过程,系数分别为x,y:r=ax+by.

计算gcd(a,b)=ax+by所需的x,y:

a=q_0b+r_0, \ q_0=\frac{a}{b}

b=q_1r_0+r_1,\ q_1=\frac{b}{r_0}

......

方程是不定方程,无法限定x,y.符合要求的x,y可以构成一个一维空间,在一条直线上,但是满足x,y为整数的,并不多。另外,对于ax+by=k形式的直线,如果a,b互质,则K可以为任意整数,但是如果a,b的最小公因数大于1,则小于其最公因数的数字不能被表示。可以简单证明如下:

ax+by=k, a=nc, b=mc. 则ncx+mcy=k=>c(nx+my)=k,n,m互质,所以能表示任意整数。

((m,n)=1,则存在 mx+by=1,两边同时乘以任意整数,则可以表示任意数)

在乘以一个c,则只能表示sc了,s是整数。不能表示任意整数了。

假设第k层:

p_kx_k+q_ky_k=1

第k+1层:

p_{k+1}x_{k+1}+q_{k+1}y_{k+1}=1

p_{k+1}=q_{k}

q_{k+1}=p_k \% q_k

所以:

q_kx_{k+1}+(p_k-mq_k)y_{k+1}=1, m=\frac{p_k}{q_k}

展开:

q_kx_{k+1}+p_ky_{k+1}-mq_ky_{k+1}=1, m=\frac{p_k}{q_k} \\ q_k(x_{k+1}-my_{k+1})+p_ky_{k+1}=1, m=\frac{p_k}{q_k}

对照第K层:

p_kx_k+q_ky_k=1

所以

x_k=y_{k+1} \\ y_k=x_{k+1}-my_{k+1} \\ m=\frac{p_k}{q_k}

并且,在最后一次的迭代中,一定是

p_k = 1, q_k = 0,x_k = 1, y_k=0,编程得到:

#include<stdio.h>
#include<stdlib.h>

//注意,a,b必须互质!
int ex_gcd(int a, int b, int *x, int *y) 
{    
    int x1, y1, r;

    if(b == 0) {
        if(a!= 1) {
            printf("%s line %d, error, a %d is not 1 in last recursive.\n", 
                __func__, __LINE__, a);
            exit(-1);
        }

        *x = 1;
        *y = 0;
        return a;
    }

    r = ex_gcd(b, a % b, &x1, &y1);
    *y = x1 - a / b * y1;          //根据推导的每层x,y的关系而来
    *x = y1;                       //同上

    return r;
}
 
int main(void)
{ 
    int a, b, x, y;

    while(~scanf("%d%d", &a, &b)){
        int ret = ex_gcd(a, b, &x, &y);
        printf("x : %d, y : %d, ret = %d\n", x, y, ret);//其实ret就是a,b的最大公约数
        printf("%d * %d + %d * %d = %d\n", a, x, b, y, a * x + b * y);
    }

    return 0;
}

下图展示了两个整数6和9的最大共因子是两个整数的线性组合的最小正整数这个事实:

GCD的另一个理解

无论怎样如果 (a,b)=d的话,则后续每一部大数减小数与某个整数乘积的步骤,得到的结果都是d的倍数,并且一定能够取到d的1倍的程度,看下图,如果最后一步r4=kxr5, 如果r5不是1xd, 而是nxd,那么根据公式反推回去,一定会得到(a,b) =nd 而不是(a,b) =d,所以GCD运算最后一步r5一定是1xd=d.

完善证明

证明过程中,依据“每次都保证余数小于除数,但是余数不可能小于0,由于起始值是有限的,所以最终算法一定会停止” 为什么不会出现无限接近0但是不为0的情况,算法为什么一定会停止呢?a,b可公度这一前提到底保证了什么?

可以利用自然数的良序原理(well-ordering principle)说明欧几里得算法一定会终止,最小数原理是自然数所具有的一种基本性质,即任何非空的自然数集中都有最小的自然数,该原理可以推广到整数集,有理数集。完整表达是:

良序原理指出,自然数集的每个非空子集都有个最小元素,即自然数在其标准的大小关系下构成一良序集。

参考资料

无理数存在性的几何证明-CSDN博客

初等数论中整除性规律证明-CSDN博客

欧几里得定理的证明-CSDN博客

初等数学的整除性规律证明-CSDN博客

[深入浅出C语言]理解取整、取余和取模 - 知乎

https://zh.wikipedia.org/wiki/%E7%AE%97%E6%9C%AF%E5%9F%BA%E6%9C%AC%E5%AE%9A%E7%90%86


结束

  • 9
    点赞
  • 11
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

papaofdoudou

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值