2025 CUDA 和 cuDNN 在 Windows 上如何安装配置(保姆级详细版)


一、前期准备,更新显卡驱动(可选)

  1. 如果你之前没有安装过显卡驱动,或者用的一直都是原厂安装版本,建议重新安装,更新显卡驱动。重新安装之后在查看对应的 CUDA 和 cuDNN 版本进行安装。如果你目前使用的是稳定版的显卡驱动,不建议更新,请直接阅读第二点。

  2. 按住 Win+X 打开设备管理器,找到 显示配置器 查看显卡版本,比如:我的显卡是:NVIDIA GeForce RTX 3050 Laptop GPU, 为 RTX 30 系列,Laptop 表示电脑是笔记本。
    在这里插入图片描述

1.1 下载显卡驱动

  1. 官网地址:点击进入 NVIDIA 官网
    打开 NVIDIA 官网,找到 驱动程序, 选择型号后,点击开始搜索

    • 产品类型: GeForce。
    • 产品系列:根据你的显卡型号选择, (Notebooks) 表示你的电脑是笔记本,如果你的电脑是台式机,选择不带(Notebooks)的型号。
    • 产品:根据你的显卡型号选择。
    • 操作系统:根据自己电脑的操作系统进行选择,按住 Win+i 打开设置,选择系统,找到系统信息,查看系统版本。
    • 语言:选择 Chinese(Simplified),简体中文的意思。
    • 下载类型:选择全部。
    • 点击 开始搜索,选择第一个,下载安装。

    在这里插入图片描述
    在这里插入图片描述
    在这里插入图片描述

  2. 下载完成后点击安装,安装路径保持默认,安装在C盘。选择第二个:NVIDIA 图形驱动程序,点击同意并继续。选择自定义(高级),点击下一步。勾选执行清洁安装,点击下一步,等待安装完毕。

二、安装 CUDA

2.1 查看支持的最高版本

  1. 打开 cmd, 输入:nvidia-smi, nvidia-smi显示的CUDA版本是Driver API支持的最高版本。
    在这里插入图片描述2. 或者打开NVIDIA控制面板查看。Win+S 搜索NIVIDA --> 打开 NVIDIA 控制面板 --> 点击帮助 --> 点击系统信息 --> 点击组件 --> 找到 NVCUDA64.DLL --> 查看版本号,只需要看前两位 12.9.x, 就可以了,进入官网下载:12.9.x 版本。(这里根据自己电脑显卡型号,下载对应版本)
    在这里插入图片描述
    在这里插入图片描述

2.2 下载 CUDA

  1. 下载 CUDA,CUDA 版本应 ≤ nvidia-smi显示的 Driver API支持的最高版本。这里我选择的是:CUDA 12.4.1 版本, 你们根据自己的需求进行选择。
    PyTorch官网:点击进入 PyTorch 官网
    在这里插入图片描述

    下载地址:CUDA官方下载地址
    在这里插入图片描述

  2. 选择 windows, 选择 x86_64, 选择 win_11, 选择 (local),点击下载。
    在这里插入图片描述

2.3 安装 CUDA

  1. 建议保持默认,如果安装在D盘或其他盘可能会安装失败。
    在这里插入图片描述
  2. 选择自定义(高级)
    在这里插入图片描述
  3. 勾选最新版本大于当前版本的选项,若当前版本没有,则代表未安装,需要勾选。【注意】:不同版本的CUDA安装时,选择的组件可能不同,也就是下图你的界面可能与我的界面不同。(如果你是12.4版本,则与我的界面相同)
    在这里插入图片描述
  4. 安装位置保持默认
    在这里插入图片描述
  5. 打开cmd, 输入:nvcc --version,如果输出以下内容则安装成功,否则安装失败。
    在这里插入图片描述

2.4 卸载 CUDA

  1. 打开控制面板(Win+S 搜索),点击程序(卸载程序),卸载 CUDA 12.4, 重新下载安装。
    在这里插入图片描述
    在这里插入图片描述

三、安装 cuDNN

  1. 下载地址:点击进入 cuDNN 下载官网
    注意:下载 cuDNN 需要注册登录 NVIDIA 账号,在 NVIDIA 官网注册登录。
    在这里插入图片描述
    在这里插入图片描述

3.1 解压 cuDNN 文件

  1. 下载之后解压,将加压后的 cuDNN 文件夹中的 bin, include, lib 3个文件夹复制进 CUDA 安装目录中:C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v12.4
    在这里插入图片描述
  2. 配置环境变量, 打开系统环境变量,找到PATH,双击进行编辑,添加以下内容:
    在这里插入图片描述
  3. 检测 cuDNN 是否安装成功,检查以下路径是否存在 cuDNN 文件:
    C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v12.4\include\cudnn.h
    C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v12.4\lib\x64\cudnn.lib
    

END 配置完成


<think>好的,我现在需要帮用户解决在Windows安装CUDAcuDNN的问题。首先,我得回忆一下自己之前处理类似问题的经验,以及查看提供的引用内容。 用户的问题是关于Windows安装CUDAcuDNN的步骤以及本兼容性。根据引用内容,特别是引用[1]引用[3],关键点包括本选择、安装步骤环境变量配置。不过,用户提供的引用中有部分信息可能有点混乱,比如引用[3]提到CUDA 9.1的本,但引用[1]推荐的是CUDA 11.8。我需要确认最新的推荐本,同时考虑到TensorFlow的兼容性。 首先,确定用户可能使用的框架,比如TensorFlow或PyTorch,这些框架对CUDAcuDNN本有特定要求。根据引用[1],TensorFlow 2.15.x需要CUDA 11.8cuDNN 8.6。因此,安装最新兼容本是关键。但用户可能使用的是其他本,需要检查对应表格。 接下来,安装步骤。引用[1]提到Windows用户下载exe文件后选择自定义安装,取消GeForce Experience,然后配置环境变量。引用[3]提到了本冲突的问题,比如安装时如果本地有旧本,需要处理兼容性,可能需要卸载旧本或者选择正确本。 然后,cuDNN安装步骤,根据引用[2],可能需要将cuDNN的文件复制到CUDA安装目录,并设置环境变量。这里需要具体说明如何下载cuDNN,解压并复制文件。 另外,验证安装的部分也很重要,用户可能需要运行nvcc --versiondeviceQuery来确认CUDA安装成功,以及检查cuDNN是否被正确识别。 需要注意的是,用户可能在安装过程中遇到本不匹配的问题,比如安装了不兼容的CUDAcuDNN本,或者驱动本过低。因此,强调检查本兼容性,尤其是框架要求的特定本,这一点很重要。 最后,生成相关问题的时候,需要考虑用户可能的后续疑问,比如如何验证安装、解决本冲突、多本管理等。 整理步骤时,需要按逻辑顺序:检查驱动、下载CUDA安装CUDA、下载cuDNN配置cuDNN、环境变量、验证安装。同时,强调本选择的重要性,并提供参考链接。</think>### Windows安装CUDAcuDNN完整步骤 #### 一、安装前准备 1. **检查NVIDIA驱动本** - 右键桌面 → 打开**NVIDIA控制面板** → 点击左下角**系统信息** → 查看“驱动程序本”(需支持目标CUDA本,推荐更新至最新驱动)[^2]。 2. **确认本兼容性** - **TensorFlow/CUDA/cuDNN对照表**(以TensorFlow为例): | TensorFlow本 | CUDA本 | cuDNN本 | |----------------|----------|-----------| | 2.15.x | 11.8 | 8.6 | | 2.12.x | 11.8 | 8.6 | 推荐安装**CUDA 11.8 + cuDNN 8.6**(兼容性最佳)[^1]。 #### 二、安装CUDA Toolkit 1. **下载CUDA** - 访问[CUDA Toolkit Archive](https://developer.nvidia.cn/cuda-toolkit-archive) → 选择**CUDA 11.8.0** → 点击“Windows 10”对应本下载(文件名如`cuda_11.8.0_win10.exe`)[^1]。 2. **安装CUDA** - 运行安装程序 → 选择“自定义安装” → **取消勾选“NVIDIA GeForce Experience”**(避免冲突)[^3]。 - 默认安装路径:`C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v11.8`。 3. **配置环境变量** - 添加以下路径到系统环境变量`PATH`: ``` C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v11.8\bin C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v11.8\libnvvp ``` #### 三、安装cuDNN 1. **下载cuDNN** - 访问[NVIDIA cuDNN下载页](https://developer.nvidia.cn/cudnn) → 登录账号 → 选择**cuDNN 8.6.0 for CUDA 11.x** → 下载ZIP文件。 2. **解压并复制文件** - 解压ZIP文件 → 将以下文件夹内容复制到CUDA安装目录: - `cuda\bin\*` → `CUDA\v11.8\bin` - `cuda\include\*` → `CUDA\v11.8\include` - `cuda\lib\x64\*` → `CUDA\v11.8\lib\x64` #### 四、验证安装 1. **检查CUDA本** - 打开命令提示符 → 输入: ```bash nvcc --version ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值