【题目描述】
在所有的N𝑁位数中,有多少个数中有偶数个数字33?由于结果可能很大,你只需要输出这个答案对1234512345取余的值。
【输入】
读入一个数N(N≤1000)𝑁(𝑁≤1000)。
【输出】
输出有多少个数中有偶数个数字33。
【输入样例】
2
【输出样例】
73
【解题思路】
定义一个数组a[1000][2],a[i][1]用于储存i位数中含有奇数个三的数有几个,a[i][2]用于统计i位数中含有偶数个三的数有几个。
以两位数为例,含有偶数个三的情况分两种:第一种情况是含有奇数个三的一位数乘10再加上3,这样所构成的两位数便含有两个三,即偶数个三(如3*10+3 = 33,含有两个3);第二种情况是含有偶数个三的一位数乘10再加上除了三以外的其他数(0,1,2,4,5,6,7,8,9,共9个),这样便保留了原来就有的偶数个三(如2*10+5 = 25,含有0个3,0为偶数)。奇数同理。
由此可以得出两条递归式:a[i][1] = a[i-1][2]+a[i-1][1]*9,a[i][2] = a[i-1][1]+a[i-1][2]*9
综上所述,只需要知道1位数中含有奇数个三和偶数个三的数各有几个,便可以推算出后面的所有位数中含有奇数个三的数的数量和含有偶数个三的数的数量。需要注意的是,0不是1位数,因此1位数中含有偶数个三的数有8个,含有奇数个三的数有1个。
【题解代码】
#include <bits/stdc++.h>
using namespace std;
int main(){
int n,a[1005][2];
a[1][1] = 1; //一位数中含有奇数个三的数有1个
a[1][2] = 8; //一位数中含有偶数个三的数有8个
cin >> n;
for (int i=2;i<=n;i++){
a[i][1] = (a[i-1][2]+a[i-1][1]*9)%12345;
a[i][2] = (a[i-1][1]+a[i-1][2]*9)%12345;
}
cout << a[n][2];
return 0;
}